mo' better bass: any substitute for watts?


Generally speaking, and all things being equal, will higher wattage amps generally produce more, better defined bass than lower wattage amps at a given volume level? I don't seem to hear much bass until I turn my amp up to a level that doesn't suit my listening habits. Wondering if this could be improved by upgrading my old NAD 25(or is it 35?)wpc Powerdrive amp with a newer, modest amp in the 100 wpc range or so. I'm thinking about driving a power amp directly off of an Oppo 980H. Speakers are Rega R3's which can produce bass in my small room when I crank the volume and/or bass tone control. Thanks!
clbone
I was not addressing the speaker characteristics . Neither was the original poster ! He was asking about watts .

Of course the speaker will make a big difference in the final output . You can't get 20hz. out of a speaker designed to only put out 80hz. I consider that a different topic for discussion !

I was merely trying to show that there are different watts capable of doing different things .

Bob;
We have a control over the configuration by our purchasing decisions . When one has a tough load to power , doesn't one seek out the amps that will power that load ? There are amps that have a high current output and there are amps that don't ! This is why some amps will power that tough load and others will not , even though they 'seem' to have the same amount of power.
By your way of thinking one could assume that a 100w HT
receiver , such as HK , Pioneer , Onkyo , Denon and etc.(high voltage watts) would have the ability to drive a 1 ohm bass load with a 4th order crossover network of an 80db. speaker . I think that you probably know better than that .

As to your example with Bryston and Parasound , some companies list there ratings conservatively and others exaggerate . Which makes it even tougher to pick the right amp for the job ! That is why we do not use generalities and company spec sheets but specific brands and models .
Post removed 
more better bass is derived from a bigger power supply and transformer which translates into amps not watts. Current is what is needed to really move woofers.
Bob_reynolds has it right. depending on what the speaker impedence is at the bass frequency one is talking about, the speaker determines what wattage (power) is necessary to give the note at the required volume. If 100 watts are necessary into 2 ohms, then that will require so many amps, which will be more amps than if the impedence at that frequency were 8 ohms, but still 100 watts are required.
If the 100 watt amp is capable of delivering the amps at the lower impedence, then a more powerfull amp isn't going to be more capable of delivering more bass.
IOW, if the speaker can't do the job, then a more powerfull amp isn't going to compensate.

Bob P.
Let me try , I could be all wet here , it's been a very long time !

Volts X Amps = Watts , the basic electrical power formula if I remember correctly .
Now you can get 100 watts with 20 volts and 5 amps - 20v X 5a = 100w , high voltage watts .
And you can get 100 watts with 5 volts and 20 amps - 5v X 20a = 100w , high amperage watts .
Correct ?

Further , really going out on a limb here ... I believe that the differences in these two examples is achieved within the power supply , ie. the output transformer , and the way that it is constructed .
I believe that the transformers' size and configuration will govern how much amperage is produced with a given amount of voltage . It takes a larger/heavier transformer to make big amperage as opposed to a smaller/lighter transformer to make small amperage .
Isn't this the reason that a 5.1 A/V receiver , with its smaller transformers , can weigh in at 25lbs. and a 2 channel amp , with larger transformers , can weigh in at 50lbs. while both putting out 100 watts/channel ? The A/V receiver will give you anemic sound under a tough load whereas the 2ch. amp is capable of giving sound with much more drive and authority .
These transformer primary and secondary windings , and their proportions , are the reason that when you cross the speaker cables on that receiver you get a light show and probably trip a breaker or blow a fuse . Do it on a welder and you can melt metal together . Both driven by a 120v/20a circuit .

Now I understand that the speaker will require X number of watts to operate that tough load . But it is the configuration of those watts that determines how that tough load is handled .

Am I making any sense here ? Kindness counts !