In all my previous discussion about linearity, I have been talking about the performance of JUST the output stage in isolation. And whether or not the output stage is biased as Class A, Class AB, or Class B . . . has NO effect on TIM.
The "TIM" acronym these days seems to be frequently flung about as a method to justify virtually any school of thought in amplifier design. But if we to talk about Transient Intermoduation Distortion as described by Matti Otala in his early-1970s AES paper -- the main thrust of this paper (and concept) revolves around frequency-compensation techniques. IIRC, Otala was basically proposing alternatives to the ubiquitous Miller compensation around the voltage-amplifier stage, under the supposition that lag compensation would reduce the loading of the differential amplifier under hard-slewing (transient) conditions, thus reducing a major source of nonlinearity.
While I have great respect for Otala's work, there are a few reasons that I feel the TIM concept, as he described it, is long overdue to be put to rest:
- The specific techniques he describes were based on observations in an era when power transistors were extremely slow, even compared to the small-signal stages that preceeded it - meaning that correctly-applied Miller compensation can be far less heavy-handed in the context of modern power semiconductors.
- Reducing the open-loop gain has absolutely no effect on the fundamental mechanism that causes the problem, it just forces the amplifier to work under conditions where it's difficult to occur. Kinda like strapping yourself to a sofa to avoid having foot pain that occurs when you stand up.
- A far more useful method of analysis of TIM is as a conditional reduction of large-signal open-loop gain and phase margin. This predicts the increase in distortion, and explains why a blanket reduction in open-loop gain can reduce the effect. It also gives valuable insight into how to solve the fundamental issue.
- This also lets us look at TIM distoriton for what it truly is -- a stability problem.
There are vastly more resources available today to more fully understand and predict the actual open-loop behavior of an amplifier than in Otala's day (i.e. high-bandwidth DSOs, FFT spectral analysis, and SPICE). This means that the rigourous engineer can more thoroughly investigate and anticipate all stability issues (including TIM), if he/she chooses to do so.
And if they don't, then TIM is the least of our worries.