I couldn't find the comments about transient issues in DAC design, however, I did find a lot of information on TIM. I thought this comment was particularly interesting given the constant debate about measurable characteristics of amplifiers, I will leave the company unnamed,
"We have developed a high quality, precision audio hi-fi amplifier designed with a completely different set of criteria from conventional commercial hi-fi amps. As most naive hi-fi buyers compare harmonic distortion specs between amplifiers and influence their choice on little else, manufacturers compete by using large amounts of negative feedback to reduce their total harmonic distortion (THD) to absurdly low levels, typically less than 0,05%, sacrificing transient response. This is actually ridiculous, as the ear finds it impossible to hear harmonic distortion below about 5%, and in fact creates significant (and measurable) internal harmonic distortion of its own. Even excellent loudspeakers produce 1 to 5% THD at low frequencies! The result of all this excessive negative feedback is that when a transient signal with a short rise-time is applied to the amplifier, the input stage(s) overload for a brief period of time, until the transient arrives at the output and the correction signal is fed back to the input. For a simple transient, such as a step function, the result is merely a slowing down of the step at the output. If, however, the input consists of a continuous tone, plus a transient, then the momentary overload will cause a loss of the continuous tone during the overload period and the creation of instantaneous dynamic intermodulation products. These specs are never specified in commercial hi-fi amplifiers, as they are difficult to measure, usually very poor, and sound terrible.. Some designers now hold the view that in current amplifier designs, harmonic and intermodulation distortion levels are so low that transient effects are the main cause of audible differences between designs, and the area in which the most improvement can be made. "