"I also don't question the possibility that the approach to voltage regulation, used in that design, (the Magtech), may be a significant contributor to its high efficiency and cool temperatures..Al" This statement Al acknowledges the very point I'm making. I had a two hour conversation with Roger Sander's three weeks ago on this very issue. Different designer's, as he explained, take different approaches to regulate voltage attempting to stabilize the voltage to improve the efficiency of the amp.
Some methods work better than others, and in some cases, according to Coda engineers I spoke to, voltage regulation can cause an amp to blow up if not done properly. Again, high heat dissipation in an amp causes the amp to get hot due to unstable, fluctuating voltage. The focus here is LINEAR VOLTAGE REGULATION. To say that power consumption creates heat is not accurate since its unstable flucuating voltage that causes the heat problem. If you take any high powered amp on the market that runs extremely hot, and install the Sanders linear regulator, the amp will run much cooler according to Roger which is why his design is patented so others cannot use it and keep it exclusive to the Magtech amp.
Some methods work better than others, and in some cases, according to Coda engineers I spoke to, voltage regulation can cause an amp to blow up if not done properly. Again, high heat dissipation in an amp causes the amp to get hot due to unstable, fluctuating voltage. The focus here is LINEAR VOLTAGE REGULATION. To say that power consumption creates heat is not accurate since its unstable flucuating voltage that causes the heat problem. If you take any high powered amp on the market that runs extremely hot, and install the Sanders linear regulator, the amp will run much cooler according to Roger which is why his design is patented so others cannot use it and keep it exclusive to the Magtech amp.