The issue I see is that if you have a wideband amplifier, and I do, the problem is that the squarewave response looks nothing like you described: it has a lot more in common with the input. It might be kind of strange to think about a tube amp that can do justice to a 10KHz squarewave but that is what I am talking about.
Thought I'd address this as well . . . I do applaud that you build amplifiers with wide bandwidth, and especially applaud that you're up front about some of the side-effects of your design approach, namely certain speaker incompatability from high output impedance, and poor power efficiency. These are quite reasonable choices for a niche product in an enthusiast market.
But in order to understand the theoretical basis for the proper application of negative feedback, you must understand the phase response of the amplifier in the frequency range(s) where the response rolls off - the stability of a feedback amplifier is inexoribly linked to its transition-band behavor. This is true no matter how extended the open-loop bandwidth may be . . . if it rolls off in an idiosyncratic manner, there will be instabilities if global feedback is applied.
Also, we can definately agree that there are many amplifiers out there using global negative feedback, that do indeed exhibit high-order distortion products and poor transient response (ringing). The point of my previous post is that these high-order products are virtually always present before the feedback is applied, and it's extremely common in many amplifiers for the feedback only to be effective at reducing the lower harmonics. Since a conventional three-stage solid-state Class B bipolar amplifier remains the poster child for global negative feedback (and higher-order distortion products) I think it makes the best example of why this is NOT caused by the feedback itself.
For this type of amp, all of the voltage gain is provided by the second stage, a transresistance amplifier . . . which can provide extraordanary amounts of gain with extremely good linearity. Its drawbacks are that it's very sensitive to loading, and the exact amount of gain you get is determined by the transistor's beta (the most variable characteristic of a bipolar transistor). But both this voltage amplifier stage and the differential input stage that preceeds it (if properly designed) will deliver extremely low distortion even without any global negative feedback.
Rather, virtually all the distortion comes from the output stage . . . in the real world, this is further exacerbated by the fact that thermal bias control is frequently inaccurate, the large half-wave currents drawn by the output stage can crosstalk into other parts of the circuit . . . it's also tough to keep nonlinear drive currents away from the preceeding voltage amp. So suffice it to say that there are lots of all kinds of distortion products being produced, of both low and high order harmonics, before feedback is ever applied. On top of it, the output stage is by far the slowest and most bandwidth-limited, with a rather unpredictable multi-order rolloff slope.
Now for the feedback. In order to have good stability, we need to have the open-loop gain and rolloff, and consequently the phase-shift, be predictable as frequency increases . . . this is done by applying freqency-dependent local feedback around the voltage amplifier in the form of the Miller compensation capacitor, reducing the gain at the rate of a tidy single-order slope as frequency increases . . . thus keeping the phase margin with feedback at 90 degrees.
So the open-loop response of a conventional solid-state amplifier, with compensation, is NOT wideband . . . its rolloff starts very much in the audioband, maybe at 200Hz or so? It's tough to measure and calculate, because the actual value is beta-dependent, and the low-frequency gain is super-high an difficult to measure. But as frequency rises and local Miller-capacitor feedback takes over, the open-loop gain becomes both lower and more predictable. And since the amplifier will have a flat closed-loop gain to well outside the audioband, what's happening is that as the frequency increases, the amount of global negative feedback actually decreases.
And when we look such an amplifier on the test bench, we might notice that for mid-band distortion, there are virtually no lower-order distortion products, but there are some higher-order harmonics. We also notice that the THD percentage rises with increasing frequency. But this is NOT a result of the feedback creating high-order products from lower-order harmonics . . . the distortion is all coming from the output stage and exists with or without feedback. What's actually going on is that for the higher harmonics and frequencies there's TOO LITTLE feedback to get rid of the distorion, because the compensation capacitor is causing the open-loop gain to fall at 6dB/octave. Also, the feedback has the benefit of lowering the noise floor, which can cause previously undetected/inaudible higher-order distortions to be uncovered.
The problem with solid-state feedback amplifiers in the 1970s was twofold: first, the power semiconductors of the day were SO slow that any form of compensation had to be pretty heavy-handed just to keep it from oscillating. And second, there were so many high-order distortion products from other aspects of the circuit that what little higher-frequency feedback was left had no chance of getting rid of it. The feedback was simply the big flashlight shining into the dark basement . . . and likewise it isn't the flashlight's fault when rats are discovered.