Square waves or 1's and 0's?


When my pc is sending signal to my avr via ethernet cable, is it sending 1's and 0's or is it sending square waves? When my transport is sending signal to coax input on my processor, is it sending square waves or 1's and 0's?

Lynne
arnettpartners
Lynne, if you haven't already, take a look at the figures shown in the Wikipedia writeup I linked to earlier for Biphase Mark/Differential Manchester Encoding, Biphase Mark (shown in the second figure) being the encoding method used for S/PDIF. The paragraph above the figures helps to clarify them.

Think of all the waveforms shown in the figures as being graphs that depict voltage along their vertical axis, and time along their horizontal axis.

As you'll see, 1 and 0 data information is conveyed by virtue of whether one "transition" or two "transitions" occur within each "clock period" (defined below). A "transition" being defined as a CHANGE from either the higher voltage ("logic 1") state to the lower voltage ("logic 0") state, or vice versa.

The higher voltage (logic 1) state is the upper of the two possible voltage levels of each signal waveform that is shown, and the lower voltage (logic 0) state is the lower of those two levels.

A "clock period" is defined as the amount of time either between one positive-going (logic 0 to logic 1) transition of the clock waveform and the next positive-going transition of that waveform, or, equivalently, between one negative-going (logic 1 to logic 0) transition of the clock waveform and the next negative-going transition of that waveform.

That encoding method allows both clock and data to be conveyed in a single signal, as Steve and I indicated earlier.

Best,
-- Al
Jitter on a digital streaming interface is another thing entirely. This is the time variation of the switching transitions, not just 1's and 0's. The digital feed to a D/A is sensitive to this because precise timing matters. It is also important that the A/D used when recording has low jitter. These two add to make more frequency modulation distortion at the D/A.

See more info here:

http://www.positive-feedback.com/Issue43/jitter.htm

Steve N.
Empirical Audio
Al & Steve,

Yes, Al, I read the Wiki piece before but was somewhat unclear until you have now further explained it. Visual aids--graphs, charts, schematics are difficult. I need to learn first the meaning before they make sense. I was unclear on the voltage being a constant value and on the transition period as it relates to the binary data.

I was struck with the beauty of the S/PDIF system where the clock and data are one signal until I read Steve's explanation of jitter and how the BMC signal is vulnerable to it.

I'm very happy to have learned this basic concept of the digital signal. Many thanks for hanging in.

Al, on an unrelated topic discussed in a former thread which I should discuss in a follow up to that thread but since the website made changes nothing works on my pc the way it did and I'm not sure you would find it on that thread, and in regard to your lack of enthusiasm for autoformers in SS, I did demo the autoformers with the hk990 integrated driving the AR9's. the 990 is rated at 150w/8ohms, 300w/4ohms, and the 9's are rated at 4ohms. So using the 4ohm tap gave the set-up 150w/8ohms versus 300w/4ohms without autoformers. There was no apparent difference except that sound quality was a little better without the autoformers apparently because of running the signal through another device with more connections. It was a horse a piece.

But with an amp that is limited into 4ohms, the autoformers did enhance sound quality when the amp was driving 4 ohm speakers turned into 8 ohm speakers. Presumably converting 8 ohm speakers into 16 ohm speakers would cause more loss than gain. If all this makes any sense.

Lynne
Hi Lynne,

Here is a link to the other thread you are referring to. Everything in your post above sounds reasonable to me.

Best,
-- Al
There's no waveforms in the Universe that are not continues. That also applies to square pulse.