Dave, thanks again. I found nice drawing that shows how rectifier diode behavior introduces EMI:
http://www.powerint.com/en/community/papers-circuit-ideas-puzzlers/circuit-ideas/careful-rectifier-diode-choice-simplifies-and-
Also notice at the "VDC Bus" arrow, that ripple is very big. When ripple gets very small charging current gets very narrow. That's the problem of linear power supplies that in reality are switchers (SMPS) operating at 120Hz but generating a lot of high frequency noise.
Also, SNAP shown at the bottom drawing is not perfectly vertical. Let's imagine that it comes back slowly. If we make vertical line from this small negative peak we can divide it into two times "ta" to the left and "tb" to the right of this vertical line. tb/ta ratio is called "Softness" of the diode. It means that diode pictured here has very little softness. Good diode is fast to switch off (short ta) but slowly snapping back (long tb).
http://www.powerint.com/en/community/papers-circuit-ideas-puzzlers/circuit-ideas/careful-rectifier-diode-choice-simplifies-and-
Also notice at the "VDC Bus" arrow, that ripple is very big. When ripple gets very small charging current gets very narrow. That's the problem of linear power supplies that in reality are switchers (SMPS) operating at 120Hz but generating a lot of high frequency noise.
Also, SNAP shown at the bottom drawing is not perfectly vertical. Let's imagine that it comes back slowly. If we make vertical line from this small negative peak we can divide it into two times "ta" to the left and "tb" to the right of this vertical line. tb/ta ratio is called "Softness" of the diode. It means that diode pictured here has very little softness. Good diode is fast to switch off (short ta) but slowly snapping back (long tb).