Is my anti-skating too strong.


I’m trying to adjust the alignment of the Ortofon Black Quintet cartridge on my Music Hall mmf 9.3 turntable.  When I put the stylus down on the alignment protractor, the tone arm pulls to the outer edge of the turntable.   Should I disable anti skating when doing alignment or is it set too strong?  Obviously haven’t done this too often.
Also, when listening to the anti skating track on The Ultimate Analogue Test LP, there is noticeable distortion at the end of the track which indicates too much or too little anti skating.  Any guidance here?
udog

Before we all start getting into a major urinary tract exercise, why not read the results of studies and observations from actual cartridge manufacturers.  As a start, I suggest reading Peter Ledermann's comments: 

https://www.sound-smith.com/faq/how-do-i-adjust-anti-skating-my-cartridge





MC, do you read what you write? "OMG sorry but it has nothing to do with the angle of the cantilever. The skating force that pulls the arm towards the center is a result of not being tangential. It has nothing to do with the offset angle of the head shell, or the cartridge, or the cantilever, or the stylus, or any of that."
It is the cantilever that must be tangent to the groove, but even then, in a conventional pivoted tonearm which has headshell offset, you won't have zero skating force even at the two null points.  First you disagree with me, and then you repeat pretty much what I said, using different words.  The magnitude of the skating force has a great deal (not "nothing") to do with headshell offset angle and the cantilever.  But headshell offset angle is the dominant cause of the skating force only at the two null points, where the cantilever IS momentarily tangent to the groove, but there is still a side force owing to the fact that the pivot point is offset.  At all other points on the surface of the LP, the cantilever/stylus is not tangent to the groove, and this plays an additive role in determining the magnitude of the force, in the vector algebra sense.
Everything to you is simple, except sometimes you are wrong in your simple explanations, so maybe not so simple on those occasions.  On this occasion, you and I are not really at odds, but you cannot see it. Or, to paraphrase something that Einstein actually did say, a hypothesis to explain a phenomenon should be simple as possible, but not simpler.
When you set up and align the cartridge, there should be no anti-skate.  There is no need for it since the outward force should be just enough to offset the inward pull.   

According to cartridge design and engineering experts (I'm not one), most arms are set up with much to much anti-skate.  It's obvious when a cartridge stylus is examined through a microscope.  One side, the one that rides against the out edge of the groove, is more worn than the inside edge, the surface of the stylus closest to the record label. of the stylus.  

The longer the arm, the lower the anti-skate force.  I have been using only 12" arms for a long time and exert almost not anti-skate force.  My cartridges seem to wear evenly.  


OMG sorry but it has nothing to do with the angle of the cantilever. The skating force that pulls the arm towards the center is a result of not being tangential. It has nothing to do with the offset angle of the head shell, or the cartridge, or the cantilever, or the stylus, or any of that.

This is why linear trackers are also tangential tracking. A pivoted arm would have zero skating force IF AND ONLY IF it is tracking tangentially. But since the arm is pivoted this can happen only at one point.

Turntables and tone arms are actually childishly simple devices, literally as simple as a teeter-totter. You just have to stop and look at them closely to see what is going on. Please, please, PLEASE do that, and not get too caught up in other peoples stories about what is going on.
MC's thoughts are a minor consideration in thinking about the magnitude of the skating force.  The most important cause of the skating force (after friction) is the tracking angle error, which is varying in terms of degrees of angle, all across the surface of an LP.  And it is never zero, for any of our conventional pivoted tonearms that have an offset headshell, even at the two null points you can achieve if you align the tonearm according to any of the known algorithms. 

The movement of the stylus in the groove generates a friction force.  If the vector direction of that force were to be straight back along the cantilever, and if the cantilever were to align with the arm wand going all the way back to the pivot, there would be no skating force, regardless of the tortuosity of the grooves or the ups and downs of the music signal.  But that never happens with our pivoted tonearms; there is always an angle of error.  That generates the side force.  If you want more on this subject, I will try to help, but otherwise, I don't want to put anyone to sleep.  Think of the little red wagon you had when you were a kid. It had four wheels and a pull handle that was attached to the axle of the front pair of wheels.  Remember what it was like to try to keep the wagon alongside of you while you dragged it down the street?  There was an aberrant side force that you had to correct for. That's the same idea as skating force.
As I was writing the post I realized that it was a “duh” question about disabling anti-skate.  MC’s thoughts on the amplitude of the test track make sense and will be factored in.  Anxious to get back to work and will give no antiskate a try as well. Thanks for the input

Millercarbon hit the nail on the head. Whenever you do anything to the arm except adjust anti skate you neutralize the anti skate.

@ozzy62 , I beg to disagree. Zero anti skating never sounds better but too much is just as bad. In the absence of an accurate measurement device such as the WallySkater or my Gizmo (see my system page, last picture) the anti skate should be set so that the arm drifts slowly towards the center of a groove less record. You can also use the runout area if you are quick. 
As your alignment may be off start again. Zero antiskating for alignment, when finished with that apply small side force and see how it goes from there. Normally little is needed. Practice it.

G


One more thing to keep in mind is that in some situations, ZERO anti-skate sounds better.


Zero anti-skate for alignment purposes.

Whenever you hear distortion, test track or otherwise, always remember the Left channel is on the Left (inside) side groove wall, and the Right channel is on the Right (outside) groove wall. 

Anti-skate pulls the arm to the outside. So too much anti-skate will pull the arm out too much, leaving too little tracking force on the inside, and so the left channel will distort. In the reverse, too little anti-skate gives too much force on the inside, and so the outside Right channel will distort.

Skating forces are generated by the angle of the cartridge being dragged through the groove. Therefore, the higher the volume, the bigger the groove amplitude, the greater the drag and therefore the greater the anti-skate needed to counter it. Notice then this changes constantly depending on the music. So if you use a test LP and set anti-skate high enough to track really high amplitude test tracks, do not be surprised if it is too much anti-skate for a lot of your music. You may or may not notice a problem. Usually people only notice problems at the extremes. Just something to keep in mind.

All of this stuff is childishly simple once you learn how to think it through. Where it gets hard is when a million audiophiles start telling you all kinds of stories and getting you trying things without ever explaining so you understand why. Once you understand why the questions evaporate, you know the answers without even asking.
 Should I disable anti skating when doing alignment... ?


sure, you have to