The molecular level explanation of "cable burn-in"


According to one cable seller

"The insulation (or dielectric) will absorb energy from the conductor when a current is flowing (i.e. when music is playing). This energy-absorption causes the dielectric's molecules to re-arrange themselves from a random order into a uniform order. When the molecules have been rearranged, the dielectric will absorb less energy & consequently cause less distortion."

So it’s the plastic polymer (as dielectric insulation) to undergo some sort of molecular rearrangements to minimize the distortion. Probably one of the greatest scientific discoveries ever!

“Many premium AC cords constrict or compress the audio transient as their characteristic impedance restricts the transient current.”

We all know impedance restricts current but how possibly “many” premium AC cords constrict/compress the audio transient (when not carrying audio signal)? Then again is it achieved by this molecular rearrangements of the cable insulation?

Unfortunately there are no measurement data or mathematical formulas to be found to back up this amazing scientific discovery. Simply “it happens”. So I came up with a formula for them.

∆E = P - SoT

∆E: energy absorbed by dielectric

P: energy (power) drawn from wall outlet

So : Smake Oile

T: Dielectric Transition Temperature

classicrockfan

Showing 1 response by kraftwerkturbo

I think once a cable is burnt IN (best to measure that time), then you can only use it for 2x the burn in time before it is so altered that it is burnt OUT (you know those atoms and molecules get so dizzy from changing around that they start twisting the sound bites). But the shroom stash that made me hear the difference between un burnt, burnt IN and burnt OUT cable is now also gone. Darn. Shopping Amazon for pixel dust now. Do you SMOKE pixel dust or make cookies with it?