Yeah, there is no way that this amp is running 40w class A. To deliver 120w into 8 ohms, the amp probably has rail voltages of approximately +/- 46v. To deliver 40w RMS class A, you'd need a bias current of about 1.6A to allow the amp to deliver 3.2A peak while staying in class A (assuming a push-pull output stage which is the most efficient for class A).
Across the two rails, that's an idle dissipation of almost 300W for the two channels. To support that, you'd need heatsinks probably 20 times the size of the ones in that amp, and it would still get toasty - probably too hot to hold your hand on it.
A class A/B amp with heatsinks the size of the IN200 is probably biased just enough to prevent the output transistors from completely turning off near the zero crossing - maybe a bit higher. I'd be surprised if it would stay in class A beyond a few hundred milliwatts.
Across the two rails, that's an idle dissipation of almost 300W for the two channels. To support that, you'd need heatsinks probably 20 times the size of the ones in that amp, and it would still get toasty - probably too hot to hold your hand on it.
A class A/B amp with heatsinks the size of the IN200 is probably biased just enough to prevent the output transistors from completely turning off near the zero crossing - maybe a bit higher. I'd be surprised if it would stay in class A beyond a few hundred milliwatts.