Knownothing, Imagine that you play clean 1kHz sinewave but digital stream jiters in time back and forth at 60Hz. It will result on analog side in expected 1kHz signal and two other signals (sidebands) at 940Hz and 1060Hz. Their amplitude will depend on the amplitude of time jitter. These sidebands will be at very low level, in order od -50dB but still audible since they have no harmonic relation (like overtones do) with original 1kHz tone. It is form of modulation (similar to FSK). While music has many frequencies time vibration (jitter) of the signal appears at many frequencies, together causing whole bunch of new frequencies - a hash. This has has amplitude proportional to sound level and is inaudible without signal. It will make music less clean, imaging less precise etc.
Mapman, very short coax should be free from reflections. Rule of thumb says that to avoid transmission line effectes (reflections) use cable so short that propagation one way thru it is less than 1/8 of transition time. Assuming average transition at 25ns it will be <3.125ns equivalent to about 2ft of the cable (propagation = 5ns/m). Since it should include internal connections in transport and the DAC I would not risk putting more than 1ft. Longer cable might cause reflections and to avoid first reflection affecting first transition cable has to be longer than about half (threshold point) of this transition 25ns/2=12.5ns. At 5ns/m it will be 2.5m and since it is both ways 2.5m/2=1.25
It shows that 1.5m or even 2m cable might be better than 1m.
I said might because nobody knows exactly what transition time is so it is pretty much trial and error. If your fancy transport outputs 5ns transition it will give you great immunity from electrical noise affecting transition time, but will require well matched characteristic impedance to avoid reflections. Toslink is immune to ambient electrical noise and does not produce transmission line effects but driver transitions are slow making it more sensitive to system noise (on both sides).
Mapman, very short coax should be free from reflections. Rule of thumb says that to avoid transmission line effectes (reflections) use cable so short that propagation one way thru it is less than 1/8 of transition time. Assuming average transition at 25ns it will be <3.125ns equivalent to about 2ft of the cable (propagation = 5ns/m). Since it should include internal connections in transport and the DAC I would not risk putting more than 1ft. Longer cable might cause reflections and to avoid first reflection affecting first transition cable has to be longer than about half (threshold point) of this transition 25ns/2=12.5ns. At 5ns/m it will be 2.5m and since it is both ways 2.5m/2=1.25
It shows that 1.5m or even 2m cable might be better than 1m.
I said might because nobody knows exactly what transition time is so it is pretty much trial and error. If your fancy transport outputs 5ns transition it will give you great immunity from electrical noise affecting transition time, but will require well matched characteristic impedance to avoid reflections. Toslink is immune to ambient electrical noise and does not produce transmission line effects but driver transitions are slow making it more sensitive to system noise (on both sides).