Rodman99999,
this debate on MOSFET vs BJT has been duked out before many times & I do NOT want to get into it again. So, I'm writing this with a bit of trepidation -
both your references for MOSFETs seem to deal with MOSFETs used in a high frequency switching application (this is the key here - switching application) where MOSFETs are deemed better power devices than BJTs simply because MOSFETs are all-majority carrier devices (unlike BJTs which are bipolar carrier devices. hence the word "Bipolar" in BJT - both charges exist in this device - majority carriers in the emitter & collector & minority carriers in the base). Today's class-D amplifiers use power MOSFETs in their final output switching stage & for good reason as this stage operates at 10X the max audio frequency & we want to minimize the losses in this stage. For traditional class-A & class-AB power amplifiers, the output stage is NOT being used as a switching output stage; it's being used a continuously-variable analog output stage with high current capacity. I.E. the output stage is a gain stage & not a switching stage. There's a big difference here. You can definitely use power MOSFETs in the output analog stage as we see with Pass Labs, Threshold & many other brands. Not saying it cannot be done....
MOSFETs make better high frequency switches because at high frequencies we worry about the AC losses (CV^2f). These are the losses that are directly proportional to frequency & the parasitic capacitances of the device. Recovery time from off-to-on & on-to-off is also a big consideration in switching application & in MOSFETs this time is less than in BJTs as one does not have to wait for the majority & minority carriers to move from & get back to home base 'coz in MOSFETs there are no minority carriers!
MOSFETs are self-limiting current output-wise (higher temp means higher resistance, which means lower output current. BTW, if you did not realize this - this is negative feedback! But this negative feedback is localized to within the device) & all that is very well.
Output current-wise I also believe that BJTs do a better job - for the same amount of drain (MOSFET) or collector (BJT) current, the gain of the semiconductor device is higher in the BJT than in the MOSFET. Current in a BJT is linear relationship to circuit parameters like Vbe, circuit resitances, etc. In a MOSFET, the drain current has a square-law relationship to gate-source & threshold voltages.
At the very heart of it, the MOSFET is a voltage device (yes, it does convert input voltage to drain current, hence, the transconductance) but, naturally, it is a Field Effect device. And, intrinsically, the BJT is a current device. Yes, applying voltages to the terminals does create high electric fields but the applied voltages are meant to create electron flow (current) in a BJT & not setup a source-drain channel (like in a MOSFET).
MOSFETs have become very good power devices off-lately but I believe that BJts do a better job of high current delivery in analog circuits.