The power figure derived by the above calculation represents the minimum amount of RMS power needed to reproduce an orchestral crescendo at its original measured sound pressure. The figure will apply as a total power requirement for both channels of a stereo system, but it will not apply for a monophonic system, because mono sound of a certain measured pressure level does not sound as loud as the same level when the reproduction is stereophonic. This means that, in order to reproduce monophonic material at the subjective level encountered in the concert hall, we need more power than would be indicated on the basis of sound level meter computations.
How much more is a moot point, because the disparity between stereo and mono power requirements varies with the program material, the way it was microphoned, and the acoustics of the listening room. It usually works out to about a 1–2dB difference, which seems negligible until we remember that it takes double the power to raise the listening level by a mere 3dB. To cope with a 2dB increase, we must up our original power estimate by a factor of about 1.6. Hence, if our original figure came out to 4 watts, we would have to multiply this by 1.6 to get our power requirement for monophonic listening, and this would come out to 6.4 watts for the 10%-efficient speaker.
How much more is a moot point, because the disparity between stereo and mono power requirements varies with the program material, the way it was microphoned, and the acoustics of the listening room. It usually works out to about a 1–2dB difference, which seems negligible until we remember that it takes double the power to raise the listening level by a mere 3dB. To cope with a 2dB increase, we must up our original power estimate by a factor of about 1.6. Hence, if our original figure came out to 4 watts, we would have to multiply this by 1.6 to get our power requirement for monophonic listening, and this would come out to 6.4 watts for the 10%-efficient speaker.