My understanding is that there are two general areas of thermal compression effects. The one that has been studied and documented the best is what we might call long-term compression, which arises from both voice coil heating and magnet heating, the latter inducing a (usually temporary) loss of magnetic strength. Less well studied is what we might call thermal modulation, which as you describe happens very quickly - quick enough to reduce a sudden peak, thereby reducing the dynamic contrast, which in turn reduces the emotional effect of the music because musicians often use dynamics to convey emotion. I would expect thermal modulation to be primarily a voice coil heating phenomenon (with an accompanying increase in resistance)... when the voice coil of a speaker is hit with a 100 watt peak, it’s like touching it with a 100 watt soldering iron. Apparently JBL has patented a voice coil alloy whose resistance doesn’t change much as it heats up, presumably to combat thermal modulation. Others have worked on this too, but far as I know JBL is the first to include it in commercial products (some of their big high-end studio monitors).
A couple of years ago I had an exchange with Floyd Toole about thermal modulation, and he said they had definitely found it with some of their measurements at Harmon, and that in some cases it was pretty bad. He mentioned testing a 3-way speaker whose midrange driver was effectively compressing on peaks by about 7 dB! He’s the one who told me that thermal modulation is an area that needs to be studied more.
My own approach to thermal compression and thermal modulation ended up being the brute force method - high efficiency drivers with big motors and big voice coils that won’t start going non-linear until they reach much higher SPLs than are typical for home audio. This just happened to be a fortuitous side effect of giving radiation pattern control a high priority.
I’d like to learn more about "static compression", but apparently my Googling skills are weak... I couldn’t find a website for speakermeasurements.com, but apparently it is associated with SoundStage. I’m aware of their "Deviation from Linearity" test, is that what you’re referring to? Seems to me it includes thermal effects as well. Anyway kudos to them for running it - Richard C. Heyser used to do something similar back in the day for Audio magazine.
Duke