Cleeds is correct. VTF goes down if the pivot point is moved down.
Also, The skating force is due to the friction of the stylus in the groove. Therefore the magnitude of the skating force will vary based on the stylus shape, the degree of tracking angle error, the headshell offset angle, and the modulations in the groove wall. This is why no one value of anti-skate force will be absolutely correct across the surface of any LP. It’s a moving target.
Any tonearm which is designed to be mounted so that the stylus tip overhangs the spindle will develop a skating force at all points across the surface of the LP. There are no exceptions. Therefore to say that some tone arms do not need anti-skate is to me a bit of self deception. If you cannot hear the effect of the absence of anti-skate, nevertheless there is a skating force. And that force can result in aberrant wear on the stylus.
Also, The skating force is due to the friction of the stylus in the groove. Therefore the magnitude of the skating force will vary based on the stylus shape, the degree of tracking angle error, the headshell offset angle, and the modulations in the groove wall. This is why no one value of anti-skate force will be absolutely correct across the surface of any LP. It’s a moving target.
Any tonearm which is designed to be mounted so that the stylus tip overhangs the spindle will develop a skating force at all points across the surface of the LP. There are no exceptions. Therefore to say that some tone arms do not need anti-skate is to me a bit of self deception. If you cannot hear the effect of the absence of anti-skate, nevertheless there is a skating force. And that force can result in aberrant wear on the stylus.