@mijostyn Don't include the parentheses at the end of the link.
A resistor will simply absorb power. The ZEROs transform the impedance so you get more power and less FR error.
@viber6 This statement is incorrect:
ESLs are not based on a driver in a box. Their impedance curve is essentially based on a capacitance. So with a typical ESL where the impedance varies over about a 10:1 range (the Martin Logans are no exception; 4 ohms in the bass and 0.5 ohms at 20KHz) you can see that to make 92 dB at 50Hz a Voltage Paradigm amplifier (voltage source) will make X amount of power; to do the same thing at 10KHz it will have to also make X amount of power, but in reality is will be about 4X the power because its voltage output is constant with respect to impedance and at 10Khz, the MLs are about 1 ohm. The only thing that prevents this from happening is that these HF impedances are so low that the speaker cable itself has a DCR that becomes significant, and a good number of solid state amps can't double power into such low impedances (IOW they are not perfect voltage sources). IMO Martin Logan is trying to make an ESL that works with solid state rather than tubes but to this end (again IMO) they are only partially successful since brightness is part of the result; inevitable when you mix transistors (Voltage Paradigm) with ESLs (Power Paradigm).
A resistor will simply absorb power. The ZEROs transform the impedance so you get more power and less FR error.
@viber6 This statement is incorrect:
Actually, I think that although the SS amp has the capability of providing 2x the power as impedance is halved, the SS amp is still flat in freq response at any given moderate power demand for higher impedance.If the amp is behaving as a voltage source, it will double power as impedance is halved. This also means it will cut power in half as impedance is doubled. The solid state amp will only have flat response if the speaker its driving is intended to be 'Voltage driven'. ESLs are a technology that isn't based on the Voltage Paradigm (see http://www.atma-sphere.com/Resources/Paradigms_in_Amplifier_Design.php for more on that). Under the voltage rules, the impedance curve of the speaker is also effectively a map of its efficiency: peaks in the curve represent resonance, dips represent a loss of efficiency (such as at crossover points). For example if you have a woofer in a box it has a resonance in that box. To control that, the amp has to put out *less* energy (power) into that resonance, which is also seen as a peak in the impedance curve in the bass.
ESLs are not based on a driver in a box. Their impedance curve is essentially based on a capacitance. So with a typical ESL where the impedance varies over about a 10:1 range (the Martin Logans are no exception; 4 ohms in the bass and 0.5 ohms at 20KHz) you can see that to make 92 dB at 50Hz a Voltage Paradigm amplifier (voltage source) will make X amount of power; to do the same thing at 10KHz it will have to also make X amount of power, but in reality is will be about 4X the power because its voltage output is constant with respect to impedance and at 10Khz, the MLs are about 1 ohm. The only thing that prevents this from happening is that these HF impedances are so low that the speaker cable itself has a DCR that becomes significant, and a good number of solid state amps can't double power into such low impedances (IOW they are not perfect voltage sources). IMO Martin Logan is trying to make an ESL that works with solid state rather than tubes but to this end (again IMO) they are only partially successful since brightness is part of the result; inevitable when you mix transistors (Voltage Paradigm) with ESLs (Power Paradigm).