Dave, I read your post after responding to Chakster. But I hope there will be more comments on loading and especially on "current drive", over and above the discussions you and I have had privately. On the question of whether increasing the load on an MC might impede tracing of HF encoded on an LP, I have been wrestling with that, as you know. In my own thinking, I start with the well known phenomenon of "back EMF", as I stated elsewhere on this thread, which is a phenomenon associated with driving an electromagnetic woofer, most notably. For an MC cartridge, the groove undulations put mechanical energy into the cantilever. The coil rides on the cantilever and has its own internal resistance related to the wire gauge and the number of turns of wire. For an LOMC, the resistance is typically low, almost always less than 50 ohms and most often less than 20 ohms. I am wondering whether spurious motion of the coil in the magnetic gap could excite a force that feeds back on the motion of the cantilever so as to dampen or impede it. Then I wonder whether the load resistor might affect the magnitude of that phenomenon. Since the coil resistance is already quite low relative to external load resistance, maybe the value of the load resistance would not make much difference, and therefore there would be not much effect on the tracking of HF. But maybe the difference between 100 ohms and 47K ohms (extreme differences in other words) is significant in terms of the magnitude of the retarding force. Or is this pure science fiction?
If this notion has any merit, then there would be a big difference among different types of cartridge (MM, MI, etc) as to the magnitude of the effect, because cartridges that are not LOMC typically have much greater internal resistance.
If this notion has any merit, then there would be a big difference among different types of cartridge (MM, MI, etc) as to the magnitude of the effect, because cartridges that are not LOMC typically have much greater internal resistance.