This is too simplistic a view, and I was thinking specifically just related to the basic output stage which does typically behave much like a voltage source, and is usually configured as a voltage follower, and with a light load (lighter than a speaker), behaves as a voltage source, and with load, as a voltage source with an element of constant and variable impedance.
Again, I find this is too simplistic of a view. Simply saying 35db is too little feedback without taking into account the frequency response of the feed-forward and feedback paths, not to mention what the inherent feedback is in the output stage if you are considering that separately makes any hard number in the sand questionable. The statement makes assumptions about the linearity of the feedback network as well. Ditto for Gain-Bandwidth, which is one number, but gain at frequency is far more relevant. Instrumentation op-amps may have very high gain-bandwidth, but are useless at 20KHz.
One thing you are not getting has to do with the application of feedback. What I have said in that paper is true if the amp has none- what you say above is true if the amp has enough feedback to allow it to behave as a voltage source.
Again, I find this is too simplistic of a view. Simply saying 35db is too little feedback without taking into account the frequency response of the feed-forward and feedback paths, not to mention what the inherent feedback is in the output stage if you are considering that separately makes any hard number in the sand questionable. The statement makes assumptions about the linearity of the feedback network as well. Ditto for Gain-Bandwidth, which is one number, but gain at frequency is far more relevant. Instrumentation op-amps may have very high gain-bandwidth, but are useless at 20KHz.
This is a bigger deal that it would seem to appear; if the amplifier has too little feedback (less than about 35dB) the consequence is that the feedback itself will introduce distortion, mostly composed of higher ordered harmonics (and some IM). Somewhere in the area of 35dB and north the amp finally has enough feedback such that is can actually compensate for the distortion introduced by the feedback itself.
The bottom line is this is all about Gain Bandwidth Product and the resulting loop gain- both of which have been insufficient in the prior art. The Benchmark amplifier is one of the very few non-class D designs that actually gets the feedback into the ballpark. So if you want really natural sound, you either go with an amp like that or go with an amp that uses no feedback at all- and deal with the simple fact that it won't work on all speakers, which is also true of an amplifier that is a perfect voltage source! So you'll have to audition the speaker and amp combination in any event.