Bob - Thanks for the link. I suspect that THD is a dominating factor at higher power. Noise issue itself is non-existent in my opinion because if I cannot hear anything in a silent room at full power (dead silent) I don't worry. Many amps with similar 80dB THD+N performance are showing -120dB noise floor on the other graphs. Also, small amount of noise helps to increase resolution - technique known as dithering widely used in photography.
I would be more concerned with THD and it doesn't look good.
I don't know what is relationship between THD and resolution but I suspect that resolution will still bring better sound. Another reason for that is quantization noise that is smaller at higher resolutions. DAC1 does very good job here by using sigma-delta converter that pushes quantization noise to higher bandwidth (oversampling).
I think that our hearing ability ends up slightly above 16-bit perhaps 18-20bits but I'm more concerned with sampling rate because low sampling rate in addition to phase shifts in steep low pass filters increases quantization noise (or size of square steps to make it simpler).
I would be more concerned with THD and it doesn't look good.
I don't know what is relationship between THD and resolution but I suspect that resolution will still bring better sound. Another reason for that is quantization noise that is smaller at higher resolutions. DAC1 does very good job here by using sigma-delta converter that pushes quantization noise to higher bandwidth (oversampling).
I think that our hearing ability ends up slightly above 16-bit perhaps 18-20bits but I'm more concerned with sampling rate because low sampling rate in addition to phase shifts in steep low pass filters increases quantization noise (or size of square steps to make it simpler).