Byron,
I appreciate your questions. You are definitely curious enough to look into this and I commend you on your interest.
However, poor Kunchur seems a very confused individual.
His test simply shows how two pure tones can interfere with eachother in a way that becomes audible. However, his conclusions are completely bogus. The listener is NOT hearing temporal time-domain effects of microseconds. The listener is actually hearing changes in the combined resultant waveform which has been altered by offsetting one source to the other (combined - meaning both waves and including all room reflections).
As I explained, this will lead to TOTAL destructive interference of the primary direct signal as heard by the listener at an offset of 2.5 CM. This is like a signal that is TOTALLY out of phase. The direct sound will be inaudible and all the listener hears is all the sound around the room (reflected sounds). Since we detect the direction of sound from the relative timing of the wave front (or nerve bundle triggers) across each ear then we lose that ability when a signal is out of phase.
Poor Kunchur is conflating things in a bad way - this is bad science.
However, his remarks about speaker alignment and panels are partly valid. It is almost certain that large radiating surfaces can cause the kind of interference at certain frequencies like what he achieved in this experiment. This manifests itself in a speaker response that has many suckouts across the frequency spectrum. In fact the anechoic response of a large panel response will look like a comb with many total suckouts across the frequency range. The result is that some sounds and some frequencies will not be as tightly imaged as with a point source speaker. Since most sounds are made up from many harmonics this effect will not be complete but on the whole it will lead to a larger more diffuse soundstage with some sounds imaging precisely and others more diffuse than when compared to a point source speaker. There is an audio tool called a
flanger that is used for electric guitar - it achieves a similar effect but even stronger.
Also Jitter is not audible in the sense you describe. It is audible when non-random jitter over a great many 1000'sa and 100,000's of samples combines in a way that introduces new frequencies. We hear those new frequencies that are created by the non-random modulation of the clock (random jitter is just white noise at very low inaudible levels).
We are totally UNABLE to hear jitter effects on a few samples.