See what the speaker manufacturer recommends. Some come with stands or spikes or some nothing at all, and some with options (not sure why floor standers would come with options).
KEF floorstanders have a nice set up - extended arms screwed into the speakers that have spikes screwed into their underside which can go into carpet. Takes a little while to install them. For hardwood floors, there are discs that come with that have extremely small indentations where the very end of the spikes fit so they floors don't get gouged and you can carefully move the speakers for ideal positioning without scratching the floors. They design their speakers around being a couple inches off the floor. Simple reason....that's how they sound best. Don't overthink it. They are tested over and over.
The discs don't defeat the purpose of the spikes because the tiny area with the force touching the floor is only very slightly larger that the tip of the spike. |
Discs under spikes are probably as close to decoupling as to coupling. The KEF discs are 18mm in diameter or about 250 mm squared in area, which is probably about 100 times the area of the tip of a spike. |
mitch2 - I'm talking about the tip of the spike going into a tiny indentation in the middle of the disc which is where it reacts with the floor. The weight of the speaker will go through that small area, not the entire disc because that is where the force is concentrated. |
Might be easier to imagine the effects of different options (springs, spikes, sorbothane etc) by comparing it to something we can all relate to - Mattress shopping. Imagine if you (speaker) were trying on different types of mattresses (footers) and were wriggling in place (speaker vibration) and how the mattress felt. Now imagine different types of mattresses and what exactly would happen to your wriggling efforts - Cheap spring mattress, where you can feel the springs - The springs would absorb some of your wriggling, but it would still feel uncomfortable, because you can feel the "springiness" of the springs. This springiness is really the springs bouncing back from your wriggling but with a slight time delay.
- You now add a pillowtop to the spring mattress (the Damping that was mentioned in an earlier post) - Ah much more comfortable, the pillowtop absorbs some of the low amplitude wriggling, and also absorbs some of the spring feedback, so it feels less bouncy
- An old school (non memory) foam mattress - slightly better, but still suffers from the springiness, although to a lesser extent
- You now try on a memory foam mattress (sorbothane, Herbie's discs etc.). There's no more force feedback from the mattress, and the memory foam, helps absorb and dampen your wriggling
- Sleep on the floor or a block of wood/stone/marble etc. that is lying on the floor - This would be fairly uncomfortable, the floor does nothing to absorb the wriggling, but doesn't impede it either. As you wriggle, you create multiple contact points between body and floor, which could create its own rattling sound.
- Now imagine if your skin was rigid, and had built spikes attached to your back, sleeping and wriggling on a concrete/stone floor - Similar to above, but the spikes might reduce the contact points making it slightly harder to wriggle and much more reduced rattling noise
- Now imagine sleeping with built in spikes, but these spikes have dug into the wooden floor - I imagine, the bonding of the spike with floor would create a damping effect making it harder for you to wriggle
|
@audiopoint , That was a rather long winded dissertation. Although I believe there are resonance points at higher frequencies involving drivers, parts of drivers and speaker enclosures, the ones that are clearly audible and measurable by simple methods reside in the bass frequency range and are most difficult to control in subwoofers because of the mass of the drivers, the amount of air that has to be compressed on both sides of the driver transferring a lot of energy to both the environment and the enclosure. Subwoofers clearly shake in the direction the driver is moving which as I have shown can be measured with an accelerometer. Spiking the subwoofer clearly reduces this shaking/resonance because the mass of the loudspeaker is now fixed to a much larger mass. If you want to say that the resonance is drained away by the floor and house that is fine by me. Subwoofer enclosures also resonate in other ways but the big one besides shaking is expanding and contracting from the pressure differentials within the enclosure. Again this is easy to measure and clearly audible. This one is more difficult to deal with and requires some design cleverness. The frequencies at which these resonances occur depends on a number of physical factors like this stiffness and size of the enclosure walls and the overall mass of the enclosure. Any resonance in a speaker enclosure at any frequency is distortion whether or not it is audible is a different question. A subwoofer measurably generates less distortion when it is firmly spiked to the floor. I do not know if this is true for a full range loudspeaker that is crossed to a sub at say 100 Hz. At higher frequencies not near as much energy is transferred to the environment or the enclosure. Does vibration transferred to a purely electronic device cause audible distortion? I seriously doubt it but neither have I run that experiment so in truth I have to say I do not know. Designing a decent speaker spike is child's play as is making a decent speaker stand. Locking the speaker to the stand is also child's play as long as you don't mind sinking a few screws into the enclosure. Designing and making a subwoofer enclosure that does not shake or resonate is not so easy. Do you have any siggestions? |