The point made about Sacrificial Surfaces are important and within the Bearing Housing there are designs in place to address this.
The Spindle is usually designed to be the part that has the Hardest Surface and in a good design will usually be produced with a Case Hardened Surface.
Bush Materials are selected that are produced to have lessened surface hardness than the Spindle.
A vintage TT that has not had a life of function with a Spindle / Bush Interface where a Hydrodynamic condition is present is at risk of having produced a wear to the Bush Material. When the Bush is produced from a Metal, the risk also becomes that abrasives may be in the Bearing Housing and having an unwanted impact on the important parts and interface surfaces. The Wear can impact on other important areas of function, especially increasing the likelihood that an eccentric rotation will develop.
A Spindle does not usually interface directly with a Thrust Pad, there is a intermediary part used that is Sacrificial, in many cases this part is a Metal Ball, that can be found to be a interference fit into the base of the Spindle or in other cases a fully exposed ball that is a standalone part.
These Balls have been witnessed scored on the surface as a result of being in an environment that is abrasive.
The modern designs for the sacrificial parts used at the interfaces are more commonly moving away from the use of Metal and are leaning towards the use of Thermoplastics as a Bush and Thrust Pad, and the Metal Ball is more commonly seen removed from a design and exchanged for a different material that has formed the ball.
In relation to vintage TT's with long periods of use behind them where a bearing housing is using Metal Sacrificial Parts, it is difficult to condone that a application of a new lubrication only is the required treatment to produce a environment for the Spindle to function without impediment.
There are many grades of Thermoplastics with different properties for the resilience to wear.
POM and PEEK are two examples and the PEEK is common choice to be used when a Platter is going to be above a certain weight.
It does not have a property that would wear a correctly selected interface ball or will it cause damage to the Spindle.
There are more modern Thermoplastics that can be selected with properties that are further suited to the use within a bearing housing.
The Spindle is usually designed to be the part that has the Hardest Surface and in a good design will usually be produced with a Case Hardened Surface.
Bush Materials are selected that are produced to have lessened surface hardness than the Spindle.
A vintage TT that has not had a life of function with a Spindle / Bush Interface where a Hydrodynamic condition is present is at risk of having produced a wear to the Bush Material. When the Bush is produced from a Metal, the risk also becomes that abrasives may be in the Bearing Housing and having an unwanted impact on the important parts and interface surfaces. The Wear can impact on other important areas of function, especially increasing the likelihood that an eccentric rotation will develop.
A Spindle does not usually interface directly with a Thrust Pad, there is a intermediary part used that is Sacrificial, in many cases this part is a Metal Ball, that can be found to be a interference fit into the base of the Spindle or in other cases a fully exposed ball that is a standalone part.
These Balls have been witnessed scored on the surface as a result of being in an environment that is abrasive.
The modern designs for the sacrificial parts used at the interfaces are more commonly moving away from the use of Metal and are leaning towards the use of Thermoplastics as a Bush and Thrust Pad, and the Metal Ball is more commonly seen removed from a design and exchanged for a different material that has formed the ball.
In relation to vintage TT's with long periods of use behind them where a bearing housing is using Metal Sacrificial Parts, it is difficult to condone that a application of a new lubrication only is the required treatment to produce a environment for the Spindle to function without impediment.
There are many grades of Thermoplastics with different properties for the resilience to wear.
POM and PEEK are two examples and the PEEK is common choice to be used when a Platter is going to be above a certain weight.
It does not have a property that would wear a correctly selected interface ball or will it cause damage to the Spindle.
There are more modern Thermoplastics that can be selected with properties that are further suited to the use within a bearing housing.