SUT - electrical theory and practical experience


Some vinyl users use a SUT to enhance the signal of the MC cartridge so that it can be used in the MM input of a phono stage.  Although I don't understand the theory behind it, I realize that a SUT should be matched individually to a particular cartridge, depending on the internal impedance of the MC, among other things.  

Assuming an appropriately / ideally matched SUT and MC, What are the inherent advantages or disadvantages of inserting a SUT after the MC in the audio chain?  Does the SUT theoretically enhance or degrade the sound quality?  What does the SUT actually do to the sound quality? 

Thanks. 

drbond

@pindac 

Yes, Rothwell Audio website seemingly very clearly and concisely explains even the basics of audio, as evinced by the next paragraph on impedance loading of cartridges, which can be applied to any component matching:

cartridge loading
Before considering how to match a moving coil cartridge with a transformer, it is worthwhile considering the effects of different loads on moving coil cartridges.
When any signal source is connected to any load impedance a potential divider is formed by the source's output impedance and the load impedance. (The output impedance is also know as the source impedance or internal impedance. The load impedance is also known as the input impedance.) The signal source could be a phono cartridge, microphone, CD player, mixer etc., it doesn't matter. The load could be a phonostage, mixer, transformer, or simply a resistor – again, it doesn't matter. The potential divider formed by the source and load impedances acts as an attenuator or a pre-set volume control. If the load impedance is very much bigger than the source impedance the attenuation is low and the effective pre-set volume control is near maximum. The usual rule for audio equipment in general is to feed the signal into a load at least ten times greater than the source impedance to avoid any significant signal loss, and this is applies to moving coil cartridges as much as to anything else. If the load impedance is 10 times greater than the source impedance the signal lost by the “pre-set volume control” is less than 1dB, ie nearly all the signal generated by the source is available to the following amplifier. Any loss of signal at the source/load interface is usually considered a bad thing as it compromises the signal-to-noise ratio. More signal is lost, ie the pre-set volume control is turned down more, if the load impedance isn't significantly higher than the source impedance. When the source and load impedances are equal the signal loss is 6dB. When the source impedance is 9 times greater than the load impedance the signal loss is 20dB. Most modern moving coil cartridges have a source impedance of about 10 ohms and the “load impedance ten times the source impedance” rule suggests 100 ohms is a good choice for load impedance and causes less than 1dB of signal loss. This is well in line with the recommendations from many cartridge manufacturers (see the table of data below). Anything above 100 ohms should be equally suitable.
Does the cartridge's tonal balance change with load impedance? It certainly does if the cartridge is a moving magnet type, but low output moving coil cartridges are much less sensitive to changes in the load impedance. Users sometimes claim that higher load impedances produce a brighter sound than lower ones, but cartridge manufacturers tend be non-specific about recommended load impedances, often recommending a wide range or simply anything above a minimum impedance.
The recommendation of Rothwell Audio Products is in line with Ortofon, Audio Technica and most other cartridge manufacturers - that 100 ohms is a good value for most cartridges, and that the exact value is not critical as long as it is well above the cartridge's source impedance.
One thing is certain, and that is that the load impedance should not be equal to the cartridge's source impedance. That would produce a 6dB loss of signal (when there's often only a few hundred microvolts to start with) and seriously compromise the signal-to-noise ratio. The idea that having the load impedance equal to the source impedance achieves perfect "matching" is wrong and is the most commonly held myth about moving coil cartridges. It also gives rise to most of the confusion surrounding step-up transformers and how to select the correct one for any given cartridge. The reasons for the “matched impedance” myth are examined below.}”

….but, Rothwell Audio Products explanations also go into further detail in the next section, which would definitely imply caution against SUT use in a current based phono stage, due to geometrically increasing impedance:

the transformer turns ratio and impedance ratio
The turns ratio of a transformer is the ratio of the number of turns of wire on the primary winding to the number of turns of wire on the secondary winding, and the voltage on the primary is stepped up (or down) by the same ratio as the turns ratio and appears on the secondary. A transformer with a 1:10 turns ratio for example will step up a voltage at its primary by a factor of ten. However, since transformers are totally passive devices with no power supply to draw energy from, no extra power can be produced by a transformer and an increase in voltage will be accompanied by a corresponding decrease in current. This is what gives rise to the concept of the impedance ratio. The impedance ratio is the square of the turns ratio and makes an impedance on the secondary winding of a transformer appear to a source feeding the primary as that impedance transformed by the square of the turns ratio. The transformer itself doesn’t have an impedance, rather an impedance on one side of it will look like a different impedance from the other side (it works in both directions). In the case of, for example, a 1:10 step-up transformer, a 20k impedance on the secondary winding will appear to be a 200 ohm impedance on the primary winding (20,000 divided by 10 squared equals 200). A 1:2 step-up transformer with a 100k load on the secondary would appear to have an input impedance to a source driving the primary as 25k (100k divided by 2 squared equals 25k).

So, it would seem logical that a cartridge with an output voltage of, for example, 0.5mV, when used with a step-up transformer with a 1:10 turns ratio, would produce 5mV at the transformer’s output. Yes, it would if the cartridge’s source impedance (also known as its internal impedance or its coil impedance) was zero. In practice, with low impedance cartridges of about 10 ohms or less and low ratio transformers (less than about 1:20), the transformer’s output voltage is very close to the cartridge’s output voltage multiplied by the turns ratio and can be safely used as a good first order approximation for guidance. However, the cartridge’s source impedance may be low but it is never zero, and the transformed secondary load needs to be considered for a more accurate analysis. Consider as an example a transformer with a 1:10 ratio and a cartridge with a 10 ohm coil. If the load on the transformer secondary is an MM phonostage with a 47k impedance, that load appears to the cartridge as 470 ohms (47,000 divided by 10 squared) and must be driven by the 10 ohm coil. The 470 ohm load and the 10 ohm source form a potential divider (the “pre-set volume control” described in the previous section) with some of the cartridge’s voltage dropped across its own internal 10 ohm impedance. The proportion dropped internally is 10/(470+10) = 0.0208, which is not very much at all – just 0.2dB. The deviation from the first order approximation is small and probably not worth worrying about, but it is there. It’s when higher turns ratios are used with higher source impedances that the potential divider effect becomes significant. Consider a cartridge with a 40 ohm coil and a transformer with a 1:30 ratio. The 47k load on the secondary now appears as 52 ohms from the primary side. When driven by a 40 ohm source the voltage divider is formed by 52 ohms and 40 ohms. Therefore the proportion of signal dropped across the cartridge’s coil is 40/(40+52) = 0.43, which is very significant – nearly half the voltage produced by the cartridge is lost internally. Whereas only 0.2dB was lost in the previous example, here the signal loss is 5dB, and instead of achieving a signal voltage at the output of the transformer of 30 times the cartridge’s output, the output is only 0.43x30 times the cartridge’s output, ie a voltage step-up of effectively just 13 times, not 30 times. Clearly, increasing the transformer turns ratio by a factor of X doesn’t increase the output voltage by the same factor. As the turns ratio increases, the increase in the output voltage gets less and less as the load on the cartridge becomes more and more significant until a point is reached where increasing the turns ratio further actually causes the output voltage to drop.
The point at which the maximum possible voltage at the transformer’s output is achieved occurs when the transformed load is equal to the source impedance. In the case of a 47k secondary load (the usual load impedance of an MM phonostage) and a 40 ohm MC cartridge, the turns ratio would have to be 1:34.28 to get the absolute maximum output voltage. This is because 40x34.28x34.28 = 47000
It’s this that gives rise to the misguided notion that the transformer must “match” the cartridge impedance. Yes, it may be true that matching the impedances gives the maximum possible voltage at the transformer’s output, but in a hi-fi system we’re not looking for the absolute maximum voltage from the transformer, we’re looking for a voltage suitable to be fed into the following MM phonostage and we’re looking for maximum fidelity. This rarely (if ever) achieved by matching the impedances. The signal voltage suitable for an mm phonostage to handle is about 5mV. A higher voltage into the phonostage will reduce headroom and increase distortion. A lower voltage will compromise the signal-to-noise ratio. Trying to achieve 5mV into the phonostage (with maximum fidelity) should be the aim of a step-up transformer.
The big mistake most often made when selecting a transformer for a moving coil cartridge is to overlook the voltage required at the phonostage’s input and instead try to make the impedances match so that, for example, a cartridge with a 5 ohm source impedance sees a 5 ohm load at the transformer’s input. This approach takes the cartridge’s impedance as the most important factor when in reality it should be the cartridge’s output voltage.

To demonstrate how far wrong the “matched impedance” approach can be, take as an example an Ortofon Vivo Red cartridge with a 5 ohm source impedance. In order to "match the impedance”, the 47,000 ohms on the secondary side of the transformer would have to appear as 5 ohms on the primary side. That means that the impedance ratio must be 9400 (because 47,000 divided by 5 equals 9400) and therefore the turns ratio must be the square root of 9400, which is 97. So we must find a step-up transformer with a turns ratio of 1:97. However, the Vivo Red’s output voltage is 0.5mV and the voltage fed to the phonostage by a 1:97 transformer would 24mV. That would be enough to overload most phonostages and would be a long way from optimal. A much better approach to finding a suitable transformer ratio would be to work with the cartridge’s output voltage. The Vivo Red has an output of 0.5mV and the phonostage requires about 5mV for the best performance, therefore a ratio of 1:10 would appear to be much better. The first order approximation suggests a 1:10 ratio would give us 5mV. Does that still hold true if we also consider the cartridge’s 5 ohm source impedance and the load impedance presented by the transformer? Yes. A 1:10 transformer with a 47k load on its secondary winding presents a load of 470 ohms to the cartridge. The voltage divider formed by the 5 ohm source impedance and the 470 ohm reflected load means that only 5/(470+5) is dropped across the cartridge’s internal impedance and the actual voltage at the transformer’s output is 4.95mV, ie extremely close to the estimate using the approximate method. The 470 ohm load seen by the cartridge is perfectly compatible with Ortofon’s recommended load of >10 ohms. The “impedance matching” method of using a 1:97 ratio transformer would give the cartridge a 5 ohm load impedance, which is outside the manufacturer’s recommendation. Also, for the reasons explained below, a 1:97 transformer would have a seriously compromised performance compared to a 1:10 transformer.

Now consider a different cartridge, the Dynavector Karat17D3 with a 38 ohm coil. Using the impedance matching approach to find the best transformer ratio we end up with a ratio of 1:35 and the cartridge’s 0.3mV output becomes 5.25mV at the the transformer’s output. This time, the “impedance matching” approach appears to have worked out well, but is is really the best turns ratio? Maybe not, because Dynavector’s recommended load is 100 ohms and a 1:35 transformer would give the cartridge a 38 ohm load. In this instance a lower turns ratio would be better. For example, a 1:20 transformer would give the cartridge a load of 117.5 ohms and have an output of 4.5mV. Also, a 1:20 transformer is likely to have better performance than a 1:35 transformer, as explained below.”

Dear @drbond  : Can you share which is your target with all those internet links you posted?

Btw, every one but you knew the Rothwell information because it was posted several times in several other threads over many years now.

Do you think that are discovering the " black thread " ?  Please, wake up.

 

R.

@drbond Making the Rothwell info' available in the extended version as presented is quite fitting. This thread is certainly a place worthy of their descriptions being found.

As providers of a Design for a Step-Up Transformers along with their Head Amp Design, they do provide very useful information for any level of understanding to consider. I am sure the presentation from them wins favour with customers.

As seen in various posts, not all are using Step-Ups from the same Brands, and Step Ups are to found ranging from £$200ish through to £$3000ish and maybe upward if the Ikeda and MSL models are of interest.

The next SUT's of interest for me fall into the £500+ area depending on Spec and Coil Wire, I don't see over the £1K being of interest, but a bespoke built from the Brand will comfortably surpass this. 

It does look to be a very competitive market to maintain the greater slice of the Pie Chart.