My Electro-Voice main speakers are crossed at just over 600Hz to a large format midrange/tweeter horn (2" exit) that runs up to 17-18kHz. An important takeaway here is that the Constant Directivity horn controls directivity all the way down to the crossover point to the woofers (dual 15", vertically aligned), even lower, with a very uniform dispersion pattern at the crossover. Slopes are 36dB/octave L-R throughout, actively configured, and the mains are high-passed at ~85Hz for subs augmentation below. The EV DH1A compression drivers used here are built to withstand a crossover point at 500Hz 12dB/octave for pro cinema use, but I find they sound better crossed just over 600Hz, and with the steeper slopes. They’re an immensely well-sounding and powerful speaker system.
- ...
- 14 posts total
JBL talks about their drivers in their white papers. They are capable of covering this range. The 4” compression driver in the S9900 shows some non linear breakup above 10k but The 4” driver in the Everest is beryllium and probably addresses it. Also the ring driaphrams in the M2/4367 are also show to eliminate the breakup. I think cutting out the center removes the breakup and adding two brings back the surface area needed for SPL/heat reduction. With all that being said I think the D1 driver (used in M2, 4367, SCL-1) is about cost reduction as they needed a cheaper driver for the pro market as the exotic metal driver have to cost a tone and the pro VTX line array has 3 D1s per box, times how ever many you want 10,12… more…
Anyway the 4367 has the cleanest mids and highs I have heard to date, really special. I have never heard the other top models but based on them being made by the same designer I would imagine they are all pretty great. white paper here.
|
@erik_squires . Interesting research-- AES preprint 3207 by Oohashi et al. claims that reproduced sound above 26 kHz "induces activation of alpha-EEG (electroencephalogram) rhythms that persist in the absence of high frequency stimulation, and can affect perception of sound quality." |
@erik_squires . More from same research- Oohashi and his colleagues recorded gamelan to a bandwidth of 60 kHz, and played back the recording to listeners through a speaker system with an extra tweeter for the range above 26 kHz. This tweeter was driven by its own amplifier, and the 26 kHz electronic crossover before the amplifier used steep filters. The experimenters found that the listeners' EEGs and their subjective ratings of the sound quality were affected by whether this "ultra-tweeter" was on or off, even though the listeners explicitly denied that the reproduced sound was affected by the ultra-tweeter, and also denied, when presented with the ultrasonics alone, that any sound at all was being played.' |
@ptss Very interesting!!! My speakers are flat to 30kHz, i wonder how much of that I’ve been experiencing?? I’ve also read positive things about damping ultrasonic resonances in tweeters during crossover design, but I thought that was because of distortion artifacts being introduced at a lower frequency. |
- 14 posts total