The molecular level explanation of "cable burn-in"


According to one cable seller

"The insulation (or dielectric) will absorb energy from the conductor when a current is flowing (i.e. when music is playing). This energy-absorption causes the dielectric's molecules to re-arrange themselves from a random order into a uniform order. When the molecules have been rearranged, the dielectric will absorb less energy & consequently cause less distortion."

So it’s the plastic polymer (as dielectric insulation) to undergo some sort of molecular rearrangements to minimize the distortion. Probably one of the greatest scientific discoveries ever!

“Many premium AC cords constrict or compress the audio transient as their characteristic impedance restricts the transient current.”

We all know impedance restricts current but how possibly “many” premium AC cords constrict/compress the audio transient (when not carrying audio signal)? Then again is it achieved by this molecular rearrangements of the cable insulation?

Unfortunately there are no measurement data or mathematical formulas to be found to back up this amazing scientific discovery. Simply “it happens”. So I came up with a formula for them.

∆E = P - SoT

∆E: energy absorbed by dielectric

P: energy (power) drawn from wall outlet

So : Smake Oile

T: Dielectric Transition Temperature

classicrockfan

Simple evidence for that :

put a piece of shungite on the cable connector ends: compression of the signals ...

put a quartz piece on the ends of the same cables connector : decompression of the signals ...

now combine them and hear the result : a balance with improvement in many case... It depend of the cable quality and design ...

No cables designer working with " basic established science/engineering principles in cable/wire electronics" will do that...

By the way i designed my own devices as a shield against EMI and minerals filters : "golden plate" ( shungite+a copper external face + quartz at some point)

I dont buy tweaks...😁 I prefer homemade...

 

" basic established science/engineering principles in cable/wire electronics"

- Maybe that is not good enough to explain the difference that what different people with different hearing ability and brain function hear in their different systems with different components in different rooms. Maybe the rudimentary measurements made by the "science/engineering" community falls short when the human brain is involved.

Post removed 

I tend to agree with this statement. We measure what we CAN measure, and the measurements prove or disprove corresponding preconceived explanations of natural phenomena. So far so good. But there is a certain circularity at work: these measurements are meant to take ambiguity out of answers to certain questions only. But how about questions which have not been asked yet, either because they're considered silly, or because the underlying phenomena had not yet been noticed. As an example from my own line of work: only two generations ago, questions asking for a link between immunology and cancer were considered besides the point. I one wanted to do research in this area, funding was almost impossible to come by, because one was trying to link two separate disciplines with their own funding priorities. Only the tenacity of a determined few found out that cancer and immunology are intimately linked, leading to a completely new approach to cancer therapy (monoclonal antibodies against check-point inhibitors) and saving countless of lives in our days. Back to audio: psychoacoustics is a field of research that brings the disciplines of psychology and physiology in touch with acoustics and electronics. Now we are tasked to ask new questions and devise experiments and measurements which will provide new answers. That is how scientific progress works.

Post removed 

     Back in March 2022: a thread about power cords and break/burn-in was started.

     I hate to type, so: I'm going to copy/paste some of my speculations.

     That a highly complex musical signal, MIGHT affect Poynting vectors and signal speeds*, in interconnects, in a much more profound manner than a simple AC (ie: a fixed 60/50 Hz) signal, in a PC, seems likely (at least) to me, as; in EVERY formula regarding *those two, a signal's frequency (frequencies) always factors in greatly.

     Further: the above and what I'll c/p (seems to me) lends credence to how the application of a stronger, DC voltage/field, outside a dielectric (ala Synergistic MPC and Audioquest DBS systems), might stabilize those vectors and signal speeds, PERHAPS eliminating some time smear and, "burn-in". 

rodman99999

5,456 posts

03-31-2022 at 12:13am 

 

@holmz-

      Bear with me a minute, in my folly, far as a possibility on why a power cord might make a difference.

      Based on some of the theories on how electricity works, simplified:

      The conductor acts as a waveguide for the signal/voltage.

      Within the conductor: when excited by an AC current, electrons oscillate, generating photons/electromagnetic waves that travel, always from the source, to the load.

       Keep in mind: all signals (ie: music, AC) are sinusoidal  waves

       Those photons/electromagnetic waves travel through and outside the dielectric, which (according to it's permittivity/Poynting vectors) will have various effects on those waves.    One of the most obvious is the dielectric's effect on the speed of the signal.

      The better designers of printed circuit boards, even take the above into account, when choosing materials for their products.

       I posted a link on the first page that included data on the manufacture of semiconductor chips and what was observed when materials were cryo'd, during the process.     Short version: better contact/lowered resistance between layers.

          Under the scanning microscope: much smoother surfaces observed.

       I would hope, by now, it's a given that various cable constructions, twists, braids, etc, can make for a cleaner transmission of signals (ie: Litz, etc).            

        Just seems to me (a hypothesis): given the above (some theories and some things established/measured/proven), it's not a big stretch to believe a power cord, built of the best conductor (ie: Ohno CC silver), wrapped in a very low dielectric coefficient dielectric (ie: Teflon), cryo'd for the smoothest transfer of those photons/magnetic waves and twisted in some crazy way, might not smooth out some of perturbations/noise, from the crap an AC waveform had to go through, back to it's generator.  (run-on, much?)

       I haven't tested this, actually comparing two circuits, but: it wouldn't surprise me, if a power supply that used a choke, would be less affected by a better power cord, as the former can eliminate a lot of the high freq garbage, etc, that's either created by, or makes it through all the big converting/filtering stuff, before.

       Never thought about PCs before the good stuff hit the market, but: the Physics/QED made sense.

            I tried 'em, I like 'em and the science makes my head feel better.

                              Don't care WHAT it does to anyone else's!

 

rodman99999

5,456 posts

03-31-2022 at 12:27am 

 

     OH, and: it takes some time for the dielectric to form, take a charge, polarize, or however one chooses to define the process, when a dielectric is subjected to electromagnetic waves, which affects the Poynting vectors, measurably/predictably.

                                            The lower the material’s dielectric constant: the longer that takes.

                                                              PC (interconnect/etc)  burn-in?    Maybe?

                                                                                         Happy listening!