@alexberger , @lynn_olson mentioned earlier:
Ralph brings up a very good point about feedback: the underlying theory assumes a distortionless summing point. (The summing point is the comparator input between signal input and the sampled output.) Any distortion introduced at this point of the circuit will be amplified without correction, and there is a real possibility of introducing new, higher-order terms that are not present in the forward path of the physical amplifier. Norman Crowhurst mentions this in passing in his Audio magazine articles in the late Fifties.
Actually I read about this in one of his books. The point is that feedback applied to a cathode is going to generate higher ordered harmonics and IMD because the cathode is non-linear, even on a 12AX7. If you can, the thing to do is apply the feedback to the grid of the tube rather than the cathode. This gets tricky if you have two stages of gain as you see in the schematic above! It might also mean you have to have a feedback capacitor to block DC, which isn’t likely to treat the feedback signal very well. You see this technique being used in the line section of the Citation right after the tone controls.
You can do this in an amplifier too, wrapping the feedback around the entire amp circuit. Admittedly tube circuits are often lacking in the Gain Bandwidth Product to prevent distortion rising with frequency, but if the feedback is handled properly to start with overall its a better chance of it working right.
But I think to make balanced first amplification stage of the phonostage can be very helpful.
SUTs can have a balanced output if you like- they don't care. Transformers are very good at going back and forth between balanced and unbalanced. You will have to be careful about loading the SUT properly to maximize its performance. Why stop with a balanced input- balanced (differential) throughout gets you greater power supply immunity and lower distortion overall, as well as lower noise if the gain stages are properly executed.