Before getting lost in the weeds on balanced vs single-ended phono preamp design, it might be useful to review the general types and look at their advantages and disadvantages.
1) The most common is a high-gain stage with RIAA frequency-shaping feedback wrapped around it. This dates back to an early Fifties RCA application book. Today, it’s what you get when you buy a $200 solid-state preamp ... a modern high-gain opamp with a feedback loop wrapped around it. It has the merit of low cost and simplicity, and if done in the Fifties style seen in many preamps, a traditional sound many like.
The drawback is using a low-current device like a 12AX7, which typically runs at 0.5 mA current, which does not have enough current to drive a moderately long cable and the reactance of the feedback loop at the same time. This leads to the preamp creating slew distortion with record pops and mistracking, which exaggerates their audibility.
2) A new/old approach is splitting the RIAA equalization in two, using it as a passive filter between the first tube (for the first filter) and second tube, and a second passive filter between the second tube and the third tube. The RIAA filter is usually split in two to avoid overload and noise problems that build up with a single passive RIAAA filter with a 40 dB attenuation loss between tube sections.
This passive-filter approach requires a judicious balance between noise buildup (mostly a problem in the first section) and overload, which can easily happen if the stylus starts mistracking (which is much more common than you might expect).
3) One of the more offbeat new/old approaches is a passive LCR filter between sections, using well-shielded inductors as part of the RIAA network. This is usually a pretty exotic part, and the first stage needs enough linear current to drive the highly reactive LCR network. I have heard this type of preamp and was startled by its naturalism and lack of phono preamp coloration. But they are exotic and difficult to design.
I should add that phono cartridges are often blamed for phono preamp coloration, which mimics mistracking and common types of cartridge coloration. Most phono preamps, whether solid-state or vacuum-tube, are actually quite colored and prone to HF distortion, making many records sound shrill and distorted. The best ones reveal surprisingly quiet record surfaces as well as open and natural high frequencies.
Before doubling the complexity of the phono preamp by using a balanced circuit, it first has to have a noise floor lower than the tape hiss recorded on the LP record, and more seriously, be free of slewing distortion and overload. This is subjective, but I hear clear and obvious overload on most preamps I hear at hifi shows. The exhibitor may blame the phono cartridge or the record, but a preamp swap will reveal the distortion is actually in the preamp itself, not the cartridge. Although phono cartridges are often flawed, many phono preamps make them sound much worse than they really are.
It may be a crude standard, but above all else, components should never audibly overload on any record, no matter how badly it is mastered. It does no good to have an expensive hifi system that can only play a handful of audiophile-approved discs that have been very carefully mastered. It should be the other way around: the preamp should accept ANY disc without breaking up, distorting, or becoming shrill. That’s much more important than pushing the noise level 3 dB lower than any record ever made.