Well, keep in mind most LP’s were cut with spherical styli in mind ... specifically, the Stanton 681A with spherical styli. Over in Europe, it was the Ortofon SPU with a spherical stylus. Both were used to play the lacquer once for quality control, then off to the plating plant.
Ellipticals were fairly rare in the Sixties and often poorly cut, with obvious asymmetries. In college, I had an ADC elliptical cartridge that destroyed several of my records until I wised up and bought the Stanton (as recommended by the early Stereophile magazine).
We didn’t see Shibata or Fine-Line profiles until CD-4 quadraphonic records, with their 30 kHz FM carrier on each groove, required for adequate CD-4 playback. That was 1971 or so, if memory serves. The trick with Fine-Line profiles is azimuth needs to be *exactly* right, within one degree, or mistracking gets pretty bad. With sphericals, azimuth hardly matters, and even ellipticals are moderately tolerant of misalignment. But not Fine-Line profiles. They need to be exactly on the money.
One of my minor inventions with the Shadow Vector quadraphonic decoder (Patent #4,018,992) was an electronic crosstalk cancellation scheme, which electronically rotated the axis of the two generators so they were precisely at 45/45 degrees. That gave about 45 dB of measured separation, with an optional second-order corrector which operated above 10 kHz. That corrected for cantilever twisting at high frequencies, a problem I noticed happening with many cartridges.
Shadow Vector quadraphonic decoder
I was not thrilled to discover many $2000 to $15,000 cartridges had visibly rotated cantilevers ... not by much, but by about 2 or 3 degrees, which made azimuth adjustments extra tricky. With a Fine-Line stylus, nearly mandatory at that price point, you have to get the stylus exactly square in the groove, regardless of the generator axis. Which is where electronic compensation comes in ... if the generator is not at 45/45, you can rotate it electronically, and get the separation back with no penalty.
P.S. The crosstalk cancellation is very simple. Each channel has an adjustable amount of crosstalk from the other channel, with plus-phase crosstalk on one side of the pot, and minus-phase crosstalk on the other side. In the center of rotation, zero crosstalk. One pot for each channel, a test disc, two quick adjustments with a meter, and off you go. 45 dB or better separation from any record or cartridge.
P.P.S. That EAR schematic looks kinda sketchy to me. I would not use it. I suspect the errors and the wonky drawing style are intentional.