Hmm, well the Blackbird puts out an honest 22 watts, with half-second transient peaks probably around 60 watts. They power highly reactive electrostats with no issues, because of deep Class A biasing and zero feedback ... the load-lines for the PP 300B’s are nearly perfectly straight, which is ideal for reactive loads. With zero feedback and power supply isolation between drivers and outputs, the amplifier behaves like a limiter/compressor as it is pushed beyond 22 watts. (The power supplies are good for 200 watts per channel, plenty of reserves there. The voltage and current limiting is in the 300B’s.)
But for inefficient speakers with high-order (18 or 24 dB/octave) crossovers ... probably not. Speakers like that need an amp with a high damping factor and at least 200 watts of clean power. High damping factor typically requires high feedback, and high feedback also means hard clipping. Hard clipping sounds terrible and can destroy tweeters, so the amp should never be operated in the clipping region. So lots and lots of power, enough to never approach clipping.
Modern Class D amplifiers, particularly with GANfet switching transistors and well-designed PWM modulators, are probably optimal for these kinds of speakers. This class of amplifiers avoid those annoying Class AB colorations, and don’t have problems with bias drift as they warm up. And power reserves are large enough to avoid the clipping region.
Note there are two approaches with not that much in-between. Either moderate to low power (2 to 20 watts) with very gentle clipping and modest damping factor (between 3 and 4), accepting that clipping will happen but will have low audibility, OR 200 to 500 watts of power and clipping never happening. There’s also a handful of low-feedback low-power Class A transistor amps, which I guess are sort of a halfway house between the two.