Dear Teres,
stylus drag is only an issue if the record is not firmly clamped down to the platter.
If the record is not firmly clamped down, we do not need to talk about correct application or technical issues anyway. This is basic parameter. If securely clamped down it becomes part of the moving system and its mass - hence: heavy platter with high inertia.
As I said before - this is only one approach and certainly not the only one in igh-end audio, but it is the approach of physic and technical engineering.
A heavy platter will have no variation once it is on speed.
Any possible loss in speed is avoided before it occurs - by correct allpied coupling with string (= very low grip but enough to avoid loss of constant speed). Thus the error does not occur but the only task for motor and string is to hold the speed - nothinh else.
Stylus drag do only have an effort when the record itself "slips" on the platter surface (and believe me - I do use a cartridge which really can "drag". But of course it is only going on a record which is firmly - really firmly - pressed down on the platter).
Sometimes it really helps illustrating forces in motion with vector diagrams on a sheet of papaer. Visulising what really is going on does set some points clear really fast.
This is physics - thus it can fairly easy be determined when you allow the facts to spread.
Trying to correct any variation in speed as fast as possible ............
The result is constant back and forth in speed.
In other words - you implement unstability by doing so.
Every technical engineer into dynamics or constant torque will tell you that this is futile.
Turntable is pure physics - not taste, not opinion.
Too often in High-end audio people get the impression that physics laws have been invented during the development of audio components.
Not so.
Extremely few audio components - mechanical ones like tonearms, cartridges and turntables - do really take correct applied physics into account.
Otherwise we would have much more better components around.
stylus drag is only an issue if the record is not firmly clamped down to the platter.
If the record is not firmly clamped down, we do not need to talk about correct application or technical issues anyway. This is basic parameter. If securely clamped down it becomes part of the moving system and its mass - hence: heavy platter with high inertia.
As I said before - this is only one approach and certainly not the only one in igh-end audio, but it is the approach of physic and technical engineering.
A heavy platter will have no variation once it is on speed.
Any possible loss in speed is avoided before it occurs - by correct allpied coupling with string (= very low grip but enough to avoid loss of constant speed). Thus the error does not occur but the only task for motor and string is to hold the speed - nothinh else.
Stylus drag do only have an effort when the record itself "slips" on the platter surface (and believe me - I do use a cartridge which really can "drag". But of course it is only going on a record which is firmly - really firmly - pressed down on the platter).
Sometimes it really helps illustrating forces in motion with vector diagrams on a sheet of papaer. Visulising what really is going on does set some points clear really fast.
This is physics - thus it can fairly easy be determined when you allow the facts to spread.
Trying to correct any variation in speed as fast as possible ............
The result is constant back and forth in speed.
In other words - you implement unstability by doing so.
Every technical engineer into dynamics or constant torque will tell you that this is futile.
Turntable is pure physics - not taste, not opinion.
Too often in High-end audio people get the impression that physics laws have been invented during the development of audio components.
Not so.
Extremely few audio components - mechanical ones like tonearms, cartridges and turntables - do really take correct applied physics into account.
Otherwise we would have much more better components around.