Kirkus,
I don't get your last comment (unless Mark's comment that effective mass = moment of inertia divided by square of effective length is wrong). If Mark's equation is right, the two could be different and still result in an identical third (effective mass) value.
Mark,
The reason I asked my question above was that I thought, as Kirkus later suggested, that the compliance is in series with the moment of inertia on any change in aspect of the record (which we know has a VTF delta, but also has a VTA delta). I have forgotten much of my physics (and probably never knew as much as you have forgotten, even though it seems you haven't forgotten anything) but I would have thought the compliance was a significant 'external force' with regard to the d"Alembert principle.
In any case, leaving aside compliance effects, I would have thought that for a given mass of cartridge at the end of a given tonearm length, a spring-loaded system would reduce the effective length of a tonearm vs a gravity-loaded system. Would this not mean, assuming identical mass and tonearm length, that a spring-loaded system had a lower moment of inertia? Hmmm... Am I taking the number out of one side and not both?
I should go read a textbook again...
I don't get your last comment (unless Mark's comment that effective mass = moment of inertia divided by square of effective length is wrong). If Mark's equation is right, the two could be different and still result in an identical third (effective mass) value.
Mark,
The reason I asked my question above was that I thought, as Kirkus later suggested, that the compliance is in series with the moment of inertia on any change in aspect of the record (which we know has a VTF delta, but also has a VTA delta). I have forgotten much of my physics (and probably never knew as much as you have forgotten, even though it seems you haven't forgotten anything) but I would have thought the compliance was a significant 'external force' with regard to the d"Alembert principle.
In any case, leaving aside compliance effects, I would have thought that for a given mass of cartridge at the end of a given tonearm length, a spring-loaded system would reduce the effective length of a tonearm vs a gravity-loaded system. Would this not mean, assuming identical mass and tonearm length, that a spring-loaded system had a lower moment of inertia? Hmmm... Am I taking the number out of one side and not both?
I should go read a textbook again...