LCR phono stages we know about


Lately, I have become enthralled with LCR phono stages, based on some personal listening experiences and on the fact that many designers I respect are involved in LCR phono design. However, I don't really feel that I have a complete picture re what's out there in terms of commercial products. If you own or have heard an LCR phono stage and have an opinion, please name the product and feel free to render an opinion of it, compared to other phono stages of any type with which you are familiar. Thanks.
lewm
There is also the Wavac LCR-X2 phonostage which uses LCR type RIAA equalization. Apparently, Wavac's founder is considered the originator of the LCR concept as detailed in some internet pages (don't flame me if you think otherwise, I am just passing along info). I have the Wavac and also the DIYHiFi Supply's Cole LCR phonostage which was my first phonostage. Have always found them to be musical and palpable but not sure if it's because of the LCR equalization or other system design contributions.
John, The input stages of the Allen Wright RTP (shown in the schemtic posted by Hiho) and of the Atma-sphere MP1 are both dual-differential cascodes , i.e., balanced topologies. Thus in both cases, a CCS is used optimally at the junction of the cathodes of the two "bottom" tubes in the cascodes and ground. (Take a look at the RTP schematic; I think AW used an LM317, which is definitely not my choice, but it's a CCS nevertheless.) Thus there is no place for more CCSs on the plate side. However, your point is relevant to a single-ended topology. But in a single-ended topology, the output Z would be the parallel sum of the impedances of the CCS and of the cascode stage below. The impedance of the CCS is ideally infinite (but is always finite in reality, albeit very high). However, would not the impedance of the cascode below be a very finite number, thus dominant in the calculation of output Z? And also subject to change as the tube(s) in the cascode age? Please correct me if I'm wrong; you probably know more about this stuff than I.

Now I re-read your post, you seem to be talking about a dual-differential cascode with CCSs between cathode and ground AND between plate and B+. AW discusses that possibility in his TPCB. Have you ever tried that?
Ddrive, That's very cool that you have the Wavac. As I recall, it's "big bucks". I forgot all about the Cole; I remember reading about its pro's and cons on Romy the Cat's blog; that was an early contender in the LCR game. I'd love to hear either. That's the only way I am going to gain a feel for these beasts.
Yes you can have a LTP differential stage with a current source tail and current source plate loads. I have one. The trick is the shunt resistor. It bleeds excess current from the plate load CCS to ground and establishes the plate voltage at the same time. This does present a problem if you are using an all vacuum tube cascode in that imbalance currents between the tubes will change as the tubes age and this will lead to differences in the two plate voltages of the pair. If you are direct connected to the second stage as in my phono stage, this is bad and will eat into the dynamic voltage "headroom" of the preamp. However if a SS/tube hybrid cascode is used, the bias is mostly determined by the SS devices used (matching is a must) which generally doesn't change over time. If the plate load current sources are mounted to the same heat sink so they track thermally the problem is solved. It's a shame that the Sonus Veritas phono pre which used this topology never got any traction in the marketplace. One TT manufacturer who will remain nameless compared in to the Ypsilon and he preferred the Sonas.

With the single ended version the cathode CCS is bypassed with a capacitor.
"With the single ended version the cathode CCS is bypassed with a capacitor." This is a sidebar to the topic, really, but are you imagining a single-ended phono input with CCSs between both the cathode and ground AND between plate and B+? Using a bypass capacitor around the lower CCS does not fit in with my understanding of the need for a bypass capacitor, the value of which needs to be inversely proportional to that of the more typical cathode resistor, in order to pass audio frequencies of interest. In this case, the CCS impedance is so high that a bypass cap would seem to be superfluous. Never seen that done.

I am guilty of going off topic in a thread that I myself started up.
I found a nice thread on Wigwam, among some English guys, one of whom built a LCR phono for another member, using inductors built by Dave Slagle. The builder explains that for an LCR, it either has to be driven by a source with an output impedance equal to its input impedance (e.g., 600R), in which case it can be terminated by an impedance that is ideally 10X higher, or the other way around. In other words, when I wrote that there needs to be 600R on either side of 600R LCR network, I was wrong. But 600R impedance is still very difficult to attain with tubes, without resorting to transformers, etc. This guy used 7K inductors made by Slagle.