Redkiwi - you're right that having time synchonization requirements makes the environment more demanding. However, as long as you have 1) a redundancy scheme and 2) sufficient resources above and beyond the demands of the basic application to support the redundancy scheme, then you can effectively eliminate the time synchronous demands. The Levinson DAC / Discman buffering doesn't eliminate it because there's still no redundancy - if they send the data and it's not received correctly, there's no recovering the lost data. But if I have a 100Mbit ethernet connection and have to keep up with only the bandwidth necessary for CD playback, I can send / resend the data dozens of times if need be and still keep up. If I can transfer files across a LAN perfectly accurately at 10Mbit/sec, I should be able to transfer music "files" perfectly at a rate of 1.5Mbit/sec. If current transport /DAC interconnect technology can't perform this same feat, we should demand better.
Why do digital cables sound different?
I have been talking to a few e-mail buddies and have a question that isn't being satisfactorily answered this far. So...I'm asking the experts on the forum to pitch in. This has probably been asked before but I can't find any references for it. Can someone explain why one DIGITAL cable (coaxial, BNC, etc.) can sound different than another? There are also similar claims for Toslink. In my mind, we're just trying to move bits from one place to another. Doesn't the digital stream get reconstituted and re-clocked on the receiving end anyway? Please enlighten me and maybe send along some URLs for my edification. Thanks, Dan
- ...
- 291 posts total
- 291 posts total