Riddle me this: how is carbon a conductor?


I'm confused....

M. Wolff has a powercords, and now interconnect cables, made with "carbon ribbon". But when I look up the conductivity of carbon, it's a thousandth of silver's. Almost the same delta for copper.

So why use this stuff in the signal path?

It makes no sense to me (other than he also uses silver) that this is a good design call. Is not what one hears with these designs the non-carbon conductor geometry rather than carbon ribbon?

Really, this is not a shot across your bow, Michael (or to any who is satisfied with the product), but an attempt to understand why use such a poor conductor in the signal path?

Curious, 'cause I'm in the market for IC's and power cords, and attempting to understand the product offerings.
mprime
These cords mix silver conductors with carbon, so the low impedence silver would probably swamp out any contribution from the carbon.

steve
Herman: Are you actually reading what that article says and understanding it or are you taking it at face value? A child with basic electronics knowledge could tear that article apart piece by piece.

Since the link that you provided primarily discusses AC, i'll stick to that. Suffice it to say that showing some type of a picture-graph of a 480 millivolt square wave at 6 MHz has very little to do with how well a given product / conductor will perform at 60 Hz and / or near the audible range passing a Sine wave.

As far as i knew, people were using filters / power line conditioners / regenerators to try and narrow the bandwidth of the AC path. According to that article, it apears that we should be trying to achieve a wider bandwidth that would act as a more linear conduit for RFI to enter into our gear. After all, we want a pure sine wave that is very limited in bandwidth and nothing else.


How one could think that anything in that article ( pertaining to AC ) is beneficial is beyond me. With gibberish like this invading this forum, i'm going back on vacation. Sean
>

PS... To switch over to signal carrying cables, if you want to insert yet another source of signal loss into your system, why not just use a carbon resistor of the same appr value? You'll dissipate the same amount of signal with no chance of recovery. On top of that, you'll simply be adding to the divergence between input and output impedances between the mating gear. This reduces power transfer, increases ringing, slows transient response, etc... Then again, maybe they are counting on the "lossy" nature of this type of conductor to not only "lose" some of the primary signal, but also damp / absorb some of the reflections. I guess that we will never know as the people writing their ad text are not technically competent and / or they don't display any pertinent info to the subjects being discussed on their website.
mPrime, your math is flawed to say that you get 20dB or 30dB less signal passed through a carbon conductor. The ratio of carbon's conductivity to that of copper is not the proper way to look at it.

What we are concerned with is the amount of voltage that is delivered to the next stage. If a perfect voltage source has a 1 volt output, and I use a cable with 1 ohm of impedance hooked up to a 50K ohm input impedance, I will get 99.998% of that 1 volt delivered to the load. If I use a cable with as much as 1000 ohms of impedance I will still get 98% of it, which is -.18 dB.

As far as characterizing carbon as a "poor conductor," it has more resistance than copper but in the grand scheme of things it's really not that much. I looked at the Van Den Hull website and they state a 38 ohm/meter spec for their metal free, carbon fiber interconnects. This would result in -.006 dB/meter in the example above.
Herman,

The reason I take this approach is that the souce component will drive the interconnect and it's target load. Thus, the voltage drop you say we are concerned amount is impacted by the IR drop across the IC. This isn't anymore complicated than Ohm's Law (Freshman Physics).

Look, I'm not trying to get into a peeing contest, nor am I looking to create a flame-fest. I'm trying to understand if a manufacture's claims are supported so I may make a determination to explore their product offering. In this case, I've come to a conclusion. BTW, my conclusion should not impact anyone else's enjoyment of Mr. Wolff's products.

Sincerely,

Lee
Sean, lighten up :>) You sometimes seem to grab a mantra, such as lower resistance is better, and defend it to the death without even considering another perspective.

The issue is much more complex than how much resistance a cable has. That is but a tiny part of the complete picture, which I maintain there is much we don't understand. If we did we wouldn't have these debates ad-nauseum on topics such as is balanced better than single ended, is copper better than silver, are tubes better than transistors, is cable A better than cable B, CD vs. vinyl vs. DVD-A vs. SACD vs. my personal favorite, 8 track tapes ..........................

Open up your mind a bit and consider something besides that which you have convinced yourself is the truth and the only truth. When Monster started pushing cables in the early eighties we all laughed that a piece of wire could affect the signal at audio frequencies. Now we know better.

I don't know if these carbon cables are any good as I haven't heard them. Others say they are pretty swell. To condemm them on the basis that the resistance is a bit higher reminds me of all these people who won't eat rice because it is a carbohydrate, and they've read a bunch of sound scientific reasons why they are bad for you. I just got back from Japan and some of the longest living people in the world are a bunch of rice eating Okinawans

You defended the magnet guy in another thread and he offered nothing but the word of God to back him up. Hmmm, that sounded a little blasphemous. I think you should give the carbon guys a chance too.