Sean:
0"What the audioholics article is/should be really implying is, for example, that connections are critical for, say RF (i.e. it simply won't work) and uncritical for audio frequencies (i.e. it WILL work -- but perhaps badly, i.e. with high losses and noise introduction)."
THis is what you are saying. That article simply points out that dielectric loss tangents/DF are meaningless at audio band frequencies. It's not that an audio connection is uncritical, it's just unnecessary to view it like an RF transmission line. A ~50 kHz signal has a wavelength of 1000's of meters (lambda = propV / f ). Please someone, explain to me why anyone thinks this scenario should be treated the same as one where the conductor length itself is at or bigger than the wavelengths traveling on it.
That is why it's effectively DC (from a tl standpoint) on a wire of typical home cable lenghts.
"Helping me to understand that all cables of reasonable construction and parts quality sound identical"
1)I was trying to say that all cables do not sound the same b/c of , say reflections (vswr higher than 1), but rather lumped (rlc) chraracteristics. Inductnace and mutual inductance are based on geometry and small changes may manifest in different "sounding" (i think more like filtering) cables.
Gregm:
1"Unfortunately, if you use a 50ohm cable on 75ohm connection you'll have reflections even at audio freq"
Hmmm are you sure about this? please show me the article or data you have. Perhaps I am missing something
2"if you create a highly capacitive interconnection, you may get oscillation, and will probably get attenaution of frequencies, even at audio frequencies"
im with you on that. This has nothing to do with TL theory, this is basic lumped circuit analysis of the RLC.
Excessive capacitcane can make sources with high output Z unstable. No big deal. Once again the attenuation is due to 1st order RC filter. Not dielectric absorption or mistmatch
3"if you use additional conductors (say for shielding) you will change the electrical charactersitics of your connection and introduce shifts in the transmission;"
I think your partly right: you will add inductance. yes this changes the lumped characteristics. Any filter causes phase shifts but don't confuse this with V/I lag due to VSWR (voltage standing wave ratio).
4"simple: if you use a thin conductor you introduce a higher resistance than with a thicker wire, and possible phase shift in lower frequencies vs higher frequencies -- even in the audible range (try it, it works!)."
Once again you are describing the RLC componenets of a cable. I agree that changing these will change the sound.
Again this is not due to inherent mismatch b/t cable and source or sink.
We should not confuse source output impedance and sink input impedance with characteristic impedance as it applies in RF (freq >>100kHz) signal transfer.
And dudes: I am not trying to pick arguments with anyone. I am not the one who invented the theory. I am trying to relay the facts as i understand them. I sure might get confused myself in the description of them ( i try not but it's early and the java is empty) but they are out there for all to see. I am not a "measurement type" or one who sucks the life out of audio enjoyment. I just like to stick to the facts and separate myself from the rampant bullshit from marketing departments.
0"What the audioholics article is/should be really implying is, for example, that connections are critical for, say RF (i.e. it simply won't work) and uncritical for audio frequencies (i.e. it WILL work -- but perhaps badly, i.e. with high losses and noise introduction)."
THis is what you are saying. That article simply points out that dielectric loss tangents/DF are meaningless at audio band frequencies. It's not that an audio connection is uncritical, it's just unnecessary to view it like an RF transmission line. A ~50 kHz signal has a wavelength of 1000's of meters (lambda = propV / f ). Please someone, explain to me why anyone thinks this scenario should be treated the same as one where the conductor length itself is at or bigger than the wavelengths traveling on it.
That is why it's effectively DC (from a tl standpoint) on a wire of typical home cable lenghts.
"Helping me to understand that all cables of reasonable construction and parts quality sound identical"
1)I was trying to say that all cables do not sound the same b/c of , say reflections (vswr higher than 1), but rather lumped (rlc) chraracteristics. Inductnace and mutual inductance are based on geometry and small changes may manifest in different "sounding" (i think more like filtering) cables.
Gregm:
1"Unfortunately, if you use a 50ohm cable on 75ohm connection you'll have reflections even at audio freq"
Hmmm are you sure about this? please show me the article or data you have. Perhaps I am missing something
2"if you create a highly capacitive interconnection, you may get oscillation, and will probably get attenaution of frequencies, even at audio frequencies"
im with you on that. This has nothing to do with TL theory, this is basic lumped circuit analysis of the RLC.
Excessive capacitcane can make sources with high output Z unstable. No big deal. Once again the attenuation is due to 1st order RC filter. Not dielectric absorption or mistmatch
3"if you use additional conductors (say for shielding) you will change the electrical charactersitics of your connection and introduce shifts in the transmission;"
I think your partly right: you will add inductance. yes this changes the lumped characteristics. Any filter causes phase shifts but don't confuse this with V/I lag due to VSWR (voltage standing wave ratio).
4"simple: if you use a thin conductor you introduce a higher resistance than with a thicker wire, and possible phase shift in lower frequencies vs higher frequencies -- even in the audible range (try it, it works!)."
Once again you are describing the RLC componenets of a cable. I agree that changing these will change the sound.
Again this is not due to inherent mismatch b/t cable and source or sink.
We should not confuse source output impedance and sink input impedance with characteristic impedance as it applies in RF (freq >>100kHz) signal transfer.
And dudes: I am not trying to pick arguments with anyone. I am not the one who invented the theory. I am trying to relay the facts as i understand them. I sure might get confused myself in the description of them ( i try not but it's early and the java is empty) but they are out there for all to see. I am not a "measurement type" or one who sucks the life out of audio enjoyment. I just like to stick to the facts and separate myself from the rampant bullshit from marketing departments.