Mathematics R us! lol...
LOL here too! As someone who also has multiple EE degrees, albeit one fewer than you do, this thread is definitely fun!
Agreed on the 6db, given your power amp's relatively low sensitivity. But I also chose 12db for my example in order to simplify my other comments (the references to 25K and 75K), which would have been harder to present if the impedances looking into the preamp output would have been 50K in both directions (to ground and to the signal source).
If you think 6dB attenuation is not enough, a higher level of attenuation will actually lower the 3dB freq. A higher level of attenuation means that you will have a larger R value in series with the output. So at a lower sound volume, the highs will be rolled off even more and yields a narrower bandwidth!
This would be true if the attenuator were simply a variable resistor in series with the output.
But I've been assuming (correct me if I'm wrong) that the end terminals of the attenuator are connected, respectively, to some signal source within the preamp (which itself is assumed to have negligible output impedance), and the preamp's ground. And that the preamp output is the wiper of the attenuator, with the output being referenced to preamp ground.
Given that, and using my 12 db example, the presence of the 25K in parallel with the cable capacitance makes for a very different situation than simply having some fraction of the 100K in series with the output. Without the capacitance, you get 12db at all frequencies. With the capacitance, you get a frequency-dependent voltage divider ratio equal to the combined impedance of the parallel combination of the 25K and 255pf (combined vectorially), divided by that figure plus 75K.
I'm not sure without doing some further analysis if that would result in greater bandwidth or less bandwidth than at a 6db attenuation setting (a 50K/50K setting on the attenuator, instead of 75K/25K). Note that in both cases, the capacitance is not being charged toward the source voltage. It is being charged toward some lower voltage, through an overall impedance which is not simply the resistance between the output terminal and the "top" end of the attenuator. In the 50K/50K case, the overall output impedance is 25K. In the 75K/25K case, the overall output impedance is only 18.75K. But of course the 25K is to ground, while the 75K is to the voltage source.
To use a wonderful expression I read in a completely different context a while back, my mind is becoming a bit too "pretzeled" by all of this to readily see the answer :)
Regards,
-- Al