Phasecorrect-
If you use pink noise or MLS or swept sine waves (common for testing dispersion), most of what we see on the printout does not explain what we hear. Dispersion, as heard on music, depends on some very definite factors:
--the diameter of the driver (not so much its shape) vs. the wavelength.
--does that driver remain a rigid piston in its operating band? Most do not.
--how the reflections from the enclosure's front and sides, and reflections off the other drivers' surfaces smear transients.
--how the crossover disturbs those transients.
The real problem is that we listen to music. Look at a musical waveform on a `scope- what do you see? Do you see any sine waves, or square waves, or sharp, stand-alone impulses? No. You see an ever-changing wave "form" that has more dynamic range than the face of the scope can reveal. It REPRESENTS how the mic diaphragm moved in and out, and how our ear drum is supposed to.
The music we hear- all its tones, rhythmic interplays, harmonies, imaging- our minds interpret from that complex "wave envelope". It is this unpredictable envelope's shape that counts. When a designer focuses on the theoretical "sine wave" components only, then the shape of the envelope has become immaterial to him.
Except to the ear. Which is why time coherence, and lack of cabinet problems, and linear drivers, and fewer crappy crossover parts, and proper crossover points are all important. Those all affect dispersion AS HEARD ON MUSIC.
Phasecorrect- you asked, "if time/phase accuracy is indeed retained...why do all time/phase coherent speakers sound different?" Because they are basing their claims of accuracy upon flawed measurements. The measurements don't pick up on all that we hear.
Ever wonder why we can't often play poor recordings? Everyone blames the studios, but it's the speaker's time-domain problems that are further distorting that distortion, contributing to unlistenabilty. Test: play a poor recording on phase-coherent headphones (Grado, Stax, others) then play it on a high-order crossover speaker just as loud.
Music is about time as much as tone and loudness. If you only test for two out of three, you won't be designing- only shoving parts into a box.
Best,
Roy
If you use pink noise or MLS or swept sine waves (common for testing dispersion), most of what we see on the printout does not explain what we hear. Dispersion, as heard on music, depends on some very definite factors:
--the diameter of the driver (not so much its shape) vs. the wavelength.
--does that driver remain a rigid piston in its operating band? Most do not.
--how the reflections from the enclosure's front and sides, and reflections off the other drivers' surfaces smear transients.
--how the crossover disturbs those transients.
The real problem is that we listen to music. Look at a musical waveform on a `scope- what do you see? Do you see any sine waves, or square waves, or sharp, stand-alone impulses? No. You see an ever-changing wave "form" that has more dynamic range than the face of the scope can reveal. It REPRESENTS how the mic diaphragm moved in and out, and how our ear drum is supposed to.
The music we hear- all its tones, rhythmic interplays, harmonies, imaging- our minds interpret from that complex "wave envelope". It is this unpredictable envelope's shape that counts. When a designer focuses on the theoretical "sine wave" components only, then the shape of the envelope has become immaterial to him.
Except to the ear. Which is why time coherence, and lack of cabinet problems, and linear drivers, and fewer crappy crossover parts, and proper crossover points are all important. Those all affect dispersion AS HEARD ON MUSIC.
Phasecorrect- you asked, "if time/phase accuracy is indeed retained...why do all time/phase coherent speakers sound different?" Because they are basing their claims of accuracy upon flawed measurements. The measurements don't pick up on all that we hear.
Ever wonder why we can't often play poor recordings? Everyone blames the studios, but it's the speaker's time-domain problems that are further distorting that distortion, contributing to unlistenabilty. Test: play a poor recording on phase-coherent headphones (Grado, Stax, others) then play it on a high-order crossover speaker just as loud.
Music is about time as much as tone and loudness. If you only test for two out of three, you won't be designing- only shoving parts into a box.
Best,
Roy