sean...It isn't easy to figure out what to make of the data, so what I did was to determine what kind of power level we are talking about. I assumed that this power was all radiated (or absorbed if you like). And my conclusion is that inphase or out of phase it's just too damn small to be heard.
The frequency sweep you suggest sounds like the obvious thing to do if you had equipment, but, in practice I doubt that any instrument would be sensitive enough to even get close to the power level in question. I believe that the ear is much more sensitive than any instrument, but when an effect is large enough for the instrument to detect the instrument gives a description that the sensitive ear cannot provide.
The speaker I used was an aperiodic (damped vented) enclosure containing two LF drivers (8" and 10") which is good to about 30 Hz when powered. It was placed about 2 ft in front of a MG1.6 + subwoofer source. The 100 dB environment was measured right at the inactive speaker.
Regarding passive radiators, I generally do not like speakers that use them, but I can't be sure it is the fault of the PR. Supposedly a PR is functionally similar to a vent but behaves in a more controlled manner and without wind noise. (I don't like vents either). One idea that sounds interesting is to use an actual (inactive) driver instead of a PR, and tune it by L/R/C loading of the voice coil, instead of by the usual way of mass loading the cone. This can be extended to actively driving the "inactive" driver with some sort of signal not the same as the primary signal going to the "active" driver. (In fact I have such an experiment in process).
The frequency sweep you suggest sounds like the obvious thing to do if you had equipment, but, in practice I doubt that any instrument would be sensitive enough to even get close to the power level in question. I believe that the ear is much more sensitive than any instrument, but when an effect is large enough for the instrument to detect the instrument gives a description that the sensitive ear cannot provide.
The speaker I used was an aperiodic (damped vented) enclosure containing two LF drivers (8" and 10") which is good to about 30 Hz when powered. It was placed about 2 ft in front of a MG1.6 + subwoofer source. The 100 dB environment was measured right at the inactive speaker.
Regarding passive radiators, I generally do not like speakers that use them, but I can't be sure it is the fault of the PR. Supposedly a PR is functionally similar to a vent but behaves in a more controlled manner and without wind noise. (I don't like vents either). One idea that sounds interesting is to use an actual (inactive) driver instead of a PR, and tune it by L/R/C loading of the voice coil, instead of by the usual way of mass loading the cone. This can be extended to actively driving the "inactive" driver with some sort of signal not the same as the primary signal going to the "active" driver. (In fact I have such an experiment in process).