I think Xiekitchen is finally beginning to touch on the substance of the issue.
I believe that the vast majority of speaker designers don't WANT their speakers to have low sensitivity, they choose the drivers for OTHER characteristics. Remember when 'air-suspension' speakers were introduced (in the '50s? by Acoustic Research?)? The goal was good bass response from small enclosures. One way they did that was too decrease the stiffness of the cone's double suspension so that cone travel could increase. Increased travel required more space between the voicecoil and the magnet structure. Increasing the gap reduced sensitivity. So for better bass from a smaller box, we get lower sensitivity. The other drivers (MR, tweeter) have to be of approximately the same sensitivity, so now we have speakers with typical sensitivities of less than 90dB/2.83v./1M instead of 95 - 105dB sensitivity.
BTW, there's a difference between the terms sensitivity and efficiency, but for this discussion, the terms are interchangeable.
I believe that the vast majority of speaker designers don't WANT their speakers to have low sensitivity, they choose the drivers for OTHER characteristics. Remember when 'air-suspension' speakers were introduced (in the '50s? by Acoustic Research?)? The goal was good bass response from small enclosures. One way they did that was too decrease the stiffness of the cone's double suspension so that cone travel could increase. Increased travel required more space between the voicecoil and the magnet structure. Increasing the gap reduced sensitivity. So for better bass from a smaller box, we get lower sensitivity. The other drivers (MR, tweeter) have to be of approximately the same sensitivity, so now we have speakers with typical sensitivities of less than 90dB/2.83v./1M instead of 95 - 105dB sensitivity.
BTW, there's a difference between the terms sensitivity and efficiency, but for this discussion, the terms are interchangeable.