Rooze, good question.
Basically it pertains to the thermodynamic laws, which state first that energy cannot be created or destroyed, but can only be transferred; and secondly that energy will seek the ground state via the path of least resistance.
This applies to all forms of energy, including vibration.
When a body becomes excited by an external source(such as airborne vibration), then energy has been transferred into it from that external source. Its energy potential has been raised.
This energy will then seek its own way to be transferred somewhere, because the energy seeks to be transferred until it reaches its ground state(at which it is no longer in a state of excitation).
Where it will be transferred to, is decided by the path of least resistance that it can access.
Since high mass things, such as the earth, have a large propensity to be able to absorb many forms of energy, and dissipate it, this is ideal for the energy to be absorbed into, because it can become fully dissipated quickly and easily there. And there can be high mass things(like concrete, lead, and stone blocks, etc) that can act as a "false ground" or ground plane that is of low enough potential, compared to the excited body, that it can act in this role to an extent that it can deal with the amount of energy involved.
However, these high-mass and low-relative-potential bodies may or may not be easily accessible to the energy, due to many things, and the result is that the energy goes where ever it can to be dissipated, including vibrating everything it can get to, in an attempt to dissipate it as heat and friction, or to be dissipated in many different lower mass items that it can most easily get to.
One thing is for sure, it will try to go somewhere.
By recognizing the behavior of energy in this way, we can then direct the energy where we want it to go, much like a wire would do with electrical energy. A wire is a much easier path for electrical energy to travel, than it is to jump across the air, so it goes on the wire, as long as the other end of that wire is attached to a device with a lower relative potential.(Maybe not a perfect analogy, but illustrative of the concept). And so it is with other forms of energy too. By creating a "path of least resistance" for this vibrational energy, we can direct it to a place where it will be less detrimental for our purposes of audio listening.
That's all there is to it. A simple matter of understanding the laws of thermodynamics, and applying appropriate technology to work with them.
No, our systems do not do this perfectly, and maybe not even close to perfectly. But, they do it well enough to make an audible difference in the performance of the audio gear that we are trying to improve. The results are an audible improvement in sound systems, and a visible improvement in the picture of video systems. While perfection may not be attainable, a system which provides a significant enough improvement is deemed worthwhile by many users. And that is what we offer.
We recognize that other forms of vibration control, such as local damping with rubber or foams can be effective. However, we have found that a common side-effect of local damping schemes is "deadening" of dynamics and lifelike sound. One of our design goals was to reduce the unwanted effects of excess vibration without "deadening" the sound. Since our system leads the vibration to a remote place to be dissipated, the unwanted side-effects of "deadening" the sound do not take place when our products are used.
Not every audio hobbyist subscribes to our concepts and methods, but there is no doubt that it is an effective way to deal with unwanted vibration in entertainment systems. Whether one individual prefers it, or another method, is solely up to that individual's tastes and ideas of good sound.