To answer Al's rephrased question or Bruces's origional, I'll give the example of the speakers I'm working with lately. The midwoofer is an inexpensive 5" that has a fairly nasty and fairly normal breakup around 5KHz and rolls off rapidly after that. The design I'm using it in is basically a flat baffle MTM (+++) with a low crossover point of about 1500 Hz. BSC is handled separately, but we won't get into that because that gets complex. The low pass is a first order (electrical) with an inductor.
By itself, no crossover, the woofer shows 30 degrees of phase shift by 1500 Hz even though it is nowhere close to rolling off. With the crossover, it's 120 degrees at the same point and nearly 180 degrees by 3000 Hz. It's the combined acoustic slope that matters and that's measured in Hz and dB. Phase is along for the ride.
Things get a bit more complicated. To attenuate the cone breakup 5K, which would still be audible, I added a "tweeked" Zobel. By that, I mean I oversized the cap and undersized the resistor so that it falls somewhere between a filter and impedance compensation. It also comes in handy to get phase dialed in. Tried but couldn't get a notch filter to work well in this case. Got it about 20 dB down.
As some of you might have guessed, for a tweeter to cross that low, it has to be particularly rugged and there's only a few I know that capable, particularly with only a second order high pass. Didn't want the crossover that low but that's where the combination wanted to be. It's already 6 dB down by the crossover point, which gets summed back, when drivers are in phase. The tweeter, with crossover, has begun rolling off from around 5000 Hz. Another "trick" was utilized to round the knee. By the tweeter's Fs (resonant frequency) it's down 20 dB. The tweeter's phase shift from 1500 Hz to 20K, before any baffle diffraction and with crossover, is only 60 degrees. Essentially, little to no phase shift without crossover. If you're still paying attention, you might think something's wrong with my math. Shouldn't second order shift 180 degrees? For a high pass, the phase shift is caused by capacitance, not inductance.
In order to get the driver's phase aligned, I needed to invert the polarity of the tweeter. By the way, this sims out to a 45 dB reverse null at 2m, so I think it's pretty much on target. Nicer is that it's consistent over a wide vertical and horizontal range and listening distances. Gently sloped plateau on the impedance phase to +30 (inductive) degrees maximum, which by most standards, is quite good.
That's a very simple example, even for a two-way. You should see what happens with real woofers. Remember the old spinning plates act, where a guy balanced plates on poles and ran around to keep them going while he added more plates? Now, tie the poles together with strings and springs and rods and hinges and that's speakers.