John, Thanks for the treatise. I agree with your definitions of the terms, but I cannot see the point of your statement:
"Now while the stylus might be set at 92 degrees, the cantilever may not be at the same angle as the the cutter."
The cartridge is a transducer whose optimal function depends upon a fixed spatial relationship between the magnets and coils, as one or the other vibrates. Once the LP is cut, why should the cantilever give a damn about the cutter angle? The stylus "cares" about that in terms of SRA. So I would think that you set VTA so as to obtain proper or optimal SRA, first of all to assure proper energy transfer between groove and stylus, and then it is VTF that mainly assures the proper spatial relations between the transducing parts of the cartridge. VTA is just a convenient surrogate for SRA. Probably this has become a discussion about semantics.
"Now while the stylus might be set at 92 degrees, the cantilever may not be at the same angle as the the cutter."
The cartridge is a transducer whose optimal function depends upon a fixed spatial relationship between the magnets and coils, as one or the other vibrates. Once the LP is cut, why should the cantilever give a damn about the cutter angle? The stylus "cares" about that in terms of SRA. So I would think that you set VTA so as to obtain proper or optimal SRA, first of all to assure proper energy transfer between groove and stylus, and then it is VTF that mainly assures the proper spatial relations between the transducing parts of the cartridge. VTA is just a convenient surrogate for SRA. Probably this has become a discussion about semantics.