"As the load impedance seen by the cartridge becomes higher in relation to the cartridge's internal impedance, the difference between the two calculations (i.e., the calculations with and without application of equation*) becomes progressively smaller and less significant. That can be seen by running some calculations for various load impedances and turns ratios, such as the 117.5 ohm/20x example I provided.
The difference between the 10.6 mv and 5.1387 mv numbers is only as large as it is (more than a factor of 2) because the 37.5 ohm loading is undoubtedly much too low to be optimal for the particular cartridge, given the cartridge's 40 ohm specified impedance."
Yes, however the cartridge impedance is fixed and I was hoping to vary the step up in the analysis. In the end it makes no difference effecitve/(effective+cart)->40/(40+40) will always be 0.5, clearly the voltage drops by half when the impedance are equal. But you can see that when the effective load goes up the ratio also goes up.
look at what happens when the effective load goes to 100..100/(100+40) = 0.71....
or if it goes to 470...470/(470+40) = 0.92
or look at what happens when effective load falls to 5...5/(5+40)...=0.1111
Increasing the cartridge impedance is the flip side of the equation. Holding the effective load constant, as the cartridge impedance increases the equation falls from 1 towards zero reducing the output voltage.
All this to say, We are looking at the same thing, I just wanted to understand what exactly you meant by heavily loaded. Effective load close to or less than cart impedance is what I think you mean is a problem...or by heavily loaded.