MC Step Up Math


Hi all,

after posting a thread on here years ago and becoming exceedingly confused about cartridge step up maths, I gave up, embarrassing for a math major..perhaps I should have studied electrical engineering. Recently I have been reading up on this topic and would like to once and for all figure out how to run the math/electronic theory to find the correct step up to mate with a MC cartridge.

I have looked at 2 different links.

Link (1)

http://www.theanalogdept.com/sut.htm

and

Link (2)
http://www.rothwellaudioproducts.co.uk/html/mc_step-up_transformers_explai.html

Now, everything I read in link 2 falls apart after reading what is on link 1 and I am once again confused about what to look for in a MC step up.

In the second link the author explains that you simply apply a 2 step process: A. multiply the turns ratio by the cartridge output to find the voltage and make sure that it is not overloading the MM phono stage input (i.e/ between 2.5 and 10 MV) and then B. Perform the calculation to show you how much resistance the cartridge actually sees and apply a rule of thumb at least 3 to 10 times ratio between the source impedance and the input. The rule is for the most part out of thin air, though he does explain that matching to equate the 2 is a bad idea.

In the first link however, the author takes a different approach. He explains that a turns ratio cannot just be multiplied to give you the voltage on the other end. For example the cinemag 3440 cart used with the dynavector illustrates the point. The output is .30 MV and the turns ratio is 35.4 resulting in 10.6 MV out.

Now here is the bit I need help with. He explains that in reality the with this combination the output is really 5.1387mV NOT 10.6MV. He uses this equation to adjust the 10.6 MV to 5.1387MV:

(Vout / Vcart) = (R(Load_effective) / (R(Load_effective) + (Rcart)))

he finds Vout and then Multiplies by the turns ratio.

The parameters are as follows:

Rcart: is internal resistance of the MC cartridge
R(Load_effective): resistive load seen at the MC cartridge
Vout: Voltage output at secondary side of tranny
Vcart: Voltage output at MC cartridge

Hi all,

after posting a thread on here years ago and becoming exceedingly confused about cartridge step up maths, I gave up, embarrassing for a math major..perhaps I should have studied electrical engineering. Recently I have been reading up on this topic and would like to once and for all figure out how to run the math/electronic theory to find the correct step up to mate with a MC cartridge.

I have looked at 2 different links.

Link (1)

http://www.theanalogdept.com/sut.htm

and

Link (2)
http://www.rothwellaudioproducts.co.uk/html/mc_step-up_transformers_explai.html

Now, everything I read in link 2 falls apart after reading what is on link 1 and I am once again confused about what to look for in a MC step up.

In the second link the author explains that you simply apply a 2 step process: A. multiply the turns ratio by the cartridge output to find the voltage and make sure that it is not overloading the MM phono stage input (i.e/ between 2.5 and 10 MV) and then B. Perform the calculation to show you how much resistance the cartridge actually sees and apply a rule of thumb at least 3 to 10 times ratio between the source impedance and the input. The rule is for the most part out of thin air, though he does explain that matching to equate the 2 is a bad idea.

In the first link however, the author takes a different approach. He explains that a turns ratio cannot just be multiplied to give you the voltage on the other end. For example the cinemag 3440 cart used with the dynavector illustrates the point. The output is .30 MV and the turns ratio is 35.4 resulting in 10.6 MV out.

Now here is the bit I need help with. He explains that in reality the with this combination the output is really 5.1387mV NOT 10.6MV. He uses this equation to adjust the 10.6 MV to 5.1387MV:

Equation (*)
(Vout / Vcart) = (R(Load_effective) / (R(Load_effective) + (Rcart)))

he finds Vout and then Multiplies by the turns ratio.

The parameters are as follows:
Turns ratio: The turns ratio of the step up device
Rcart: is internal resistance of the MC cartridge
R(Load_effective): resistive load seen at the MC cartridge defined as 47,000/(Turns Ratio)^2
Vout: Voltage output at secondary side of tranny
Vcart: Voltage output at MC cartridge

for this example they using a denon 103 + cinemag 3440 are:
Turns Ratio: 35.4
Rcart: 40
R(Load_effective): 47,000/(35.4^2) = 37.5 ohms
Vout: to be solved for
Vcart: .30 MV

Putting it into equation (*) and solving yields
.1452mV for Vout.

He then takes Vout and multiplies by the turns ratio.

.1452 * 35.4 = 5.1387mV

NOW: If you take the simple method (from link 2 by multiplying turns with output) you get 10.6 MV, using this adjusted method with equation (*) you get 5.1387 MV. So my question is this. What is equation (*), is there some theory here that I am missing, is this voodoo? I would like a reliable way to select components that match, though I have trouble trusting the equation (*) method without knowing where why he is using it and what it is. I certainly want to get this ironed out before I start buying different transformers to play with, and any help with this would be greatly appreciated. Thanks.
dfel
"So as you can see, the application of equation(*) will tend to make a significant difference only if the cartridge is being loaded excessively."

Please tell me if I am understanding what you mean by this?

equation (*) increases as Load Effective increases, this can be verified by the look test or the first derivative of (*) with respect to the Effective Load variable. Equation (*) essentially is a penalty function of sorts. When the Effective Load is low it gives a number below one, as the Effective Load increases equation star gets closer to 1. This is significant since it is multiplied by the cart output voltage and the turns ratio to give the "real" voltage seen by the MM phono stage input. As claimed by the author.

Does this not mean that as the load becomes bigger, and quation (*) approaches 1 that the using it becomes less useful since when it is one you are just multiplying the turns ratio * cartridge output * 1 ?

It seems like it may matter more when the load effective is LOW, because then the calculation changes. Turns ratio*Cartridge output * ( a number less than one). THis will decrease the final value. Is that called heavily loaded? Am I understanding you correctly? Or did I make a mistake.



Essentially what I am saying in a nutshell is this : Equation star appraches 1 as effective load increases. When it is 1 you can simply multiply the turns ratio * the cartridge ouput.

However equation (*) becomes less than 1 but greater than 0 as effective load becomes small. if equation star is .5 then the voltage is cut in half! This makes a big difference.
I get the math, it is a simple equation, However I still do not understand why or where it comes from.

1. What is effective Load. He is taking 47,000/(turnsratio^2). What does that tell you, what is that calculation?

2. What is equation (*)? Where does this come from?
As the load impedance seen by the cartridge becomes higher in relation to the cartridge's internal impedance, the difference between the two calculations (i.e., the calculations with and without application of equation*) becomes progressively smaller and less significant. That can be seen by running some calculations for various load impedances and turns ratios, such as the 117.5 ohm/20x example I provided.

The difference between the 10.6 mv and 5.1387 mv numbers is only as large as it is (more than a factor of 2) because the 37.5 ohm loading is undoubtedly much too low to be optimal for the particular cartridge, given the cartridge's 40 ohm specified impedance.

Regards,
-- Al

What is effective Load. He is taking 47,000/(turnsratio^2). What does that tell you, what is that calculation?
A transformer transforms impedance in proportion to the square of the turns ratio. So the load impedance seen by the cartridge corresponds to the input impedance of the phono stage (usually 47K) divided by the square of the turns ratio.
What is equation (*)? Where does this come from?
See this Wikipedia writeup on the voltage divider effect. In the first figure, consider Z1 to be the cartridge's specified internal impedance, and Z2 to be the load impedance seen by the cartridge. Consider Vin to be the voltage the cartridge would output under conditions of negligible load (e.g. 47K).

Regards,
-- Al