Here is the thing. It leads back to the main dilemma.
Let us stick to the example for to see what I mean. The Denon 103 with .3MV, and 40 Internal impedance. I used the voltage equation to calculate what happens at all the turns ratios.
You can see it go up, until it hits its max and then it begins to decay. The max is reached at 5.142 MVs, with a turns ratio of about 35. NOW, the effective load with this turns ratio is about 40. This is not a shock, since if you maximize the voltage function by taking its first derivative, with respect to turns, and setting it equal to zero, you find it is maximized when THE INTERNAL IMPEDANCE = THE EFFECTIVE LOAD.
Now here is the question: Again, the rule of thumb has been taking over the thread, the internal impedance must be smaller by a factor of at least 10
...i.e/ the effective load should be 400 to go with the internal impedance of the cart which is 40.
Why is this necessary if this cartridge is putting out 5.142 MV MAX with any turns ratio, never over loading the phono section. the input to ouput impedance ratio here is one to one, not a multiple of 8 or 10 why would this be a problem?
If just applying the voltage equation, it would lead one to believe that any turns ratio between 10 and 80 would work, in this example. What am I missing here? With those turns ratios I get 2.5-5.0 MV into my phono section, and the effective load swings from 470 ohms to 7.3 ohms. That range of effective loads is above, below and equal to the internal impedance of the cartridge, which makes me think that either the equation(*) is junk, or the rule of the thumb (10 times the input impedance vs the output) is junk.
The question really is, which one is junk? Which one can you trust?
I am really curious to hear more about this, so this sillyness can finally make sense to me and others trying to get a good match without having to buy 10 of these things. Thanks again.