06-12-14: CbozdogCbozdog, agreed. As I indicated, I was "assuming propagation through a medium that is conductive to it, such as air or a vacuum," air being a bit less conductive than a vacuum, consistent with your comment.
Geoffkait and Almarg - agree with both, with the small exception that attenuation of radiation takes place in any medium that is not vacuum to various degrees depending on medium and frequency (with the most striking example being metals - which are very effective in absorbing said radiation for practically all frequencies relevant here). The reason is (again grossly simplifying) that metals have those free carriers ready to move when they get pushed around by EM, so the EM energy reaching them is converted to electron motion.
It should perhaps also be stated that the earlier comments pertain to propagation of electromagnetic energy through free space, as opposed to through coaxial cables, waveguides, fiberoptic cables, etc., for which the factors affecting attenuation as a function of distance are of course completely different than the "spreading out" effect I referred to.
Regards,
-- Al