Keis,
I was not shouting! I used capital letters to emphasize a word/words. In an all-lower case post, it seemed reasonable to use capital letters to stand out. Sorry that you thought I was shouting.
I re-read you orig. post - certainly appears that you succumbed to Ayre's marketing hype. There was no way to know otherwise. Your latest post suggests otherwise. Wish that you had written the words in your latest post in your original one!
==============================================
Re. feedback in bias ckts - yes, I agree that you do not need to used feedback to design a bias circuit. That's *not* what I meant to say! I re-read my orig post & I cut & paste from there:
"That's because the negative feedback loop allows only so much excursion of the transistor bias point before limiting it".
what I was trying to say was the transistor's bias point's movement along the load line. That's the excursion I'm talking about. Not the static/DC bias point, which is what I think Ar_t & Herman are talking about.
Negative feedback curtails the effective load line movement keeping the transistor in it's linear region of operation. Just trying to clarify my point.
=========================================================
True, today's class-D power amps of tons of negative feedback. I'm wondering (without actually having studied a class-D amp in any details) if today's negative feedback is diff from yester year's negative feedback OR if feedback is feedback is feedback?
In yester year's feedback, as Keis pointed out, the output signal is fedback to some point in along the forward gain path. So, this feedback is directly messing w/ the wanted output signal & botching up the sound.
Today's class-D power amps seem to be using a high-speed switching power supply that makes an attempt to follow the envelope of the music signal while the transistors are merely turned on/off at that same rate. By making the switching speed 64X or 128X or 256X 20KHz, the power supply is able to quantize the music envelope quite well.
There must be an error signal generated to ensure that the power supply is correctly tracking the envelope. It *appears* that the fedback signal is not directly in the music signal path (maybe I'm wrong & it is?!)? Maybe that's why these digital amps (despite the tons of feedback) sound much better than amps of the prev many generations? (I have a friend who seems to love his Rowland 201 mono blocks more than his prev Rowland Model 2).
I was not shouting! I used capital letters to emphasize a word/words. In an all-lower case post, it seemed reasonable to use capital letters to stand out. Sorry that you thought I was shouting.
I re-read you orig. post - certainly appears that you succumbed to Ayre's marketing hype. There was no way to know otherwise. Your latest post suggests otherwise. Wish that you had written the words in your latest post in your original one!
==============================================
Re. feedback in bias ckts - yes, I agree that you do not need to used feedback to design a bias circuit. That's *not* what I meant to say! I re-read my orig post & I cut & paste from there:
"That's because the negative feedback loop allows only so much excursion of the transistor bias point before limiting it".
what I was trying to say was the transistor's bias point's movement along the load line. That's the excursion I'm talking about. Not the static/DC bias point, which is what I think Ar_t & Herman are talking about.
Negative feedback curtails the effective load line movement keeping the transistor in it's linear region of operation. Just trying to clarify my point.
=========================================================
True, today's class-D power amps of tons of negative feedback. I'm wondering (without actually having studied a class-D amp in any details) if today's negative feedback is diff from yester year's negative feedback OR if feedback is feedback is feedback?
In yester year's feedback, as Keis pointed out, the output signal is fedback to some point in along the forward gain path. So, this feedback is directly messing w/ the wanted output signal & botching up the sound.
Today's class-D power amps seem to be using a high-speed switching power supply that makes an attempt to follow the envelope of the music signal while the transistors are merely turned on/off at that same rate. By making the switching speed 64X or 128X or 256X 20KHz, the power supply is able to quantize the music envelope quite well.
There must be an error signal generated to ensure that the power supply is correctly tracking the envelope. It *appears* that the fedback signal is not directly in the music signal path (maybe I'm wrong & it is?!)? Maybe that's why these digital amps (despite the tons of feedback) sound much better than amps of the prev many generations? (I have a friend who seems to love his Rowland 201 mono blocks more than his prev Rowland Model 2).