Gs5556, I agree with you that the primary low-frequency effect of amplifier output impedance (or damping factor) is on driver electrical Q. And the lowest possible value of Qe is not necessarily ideal.
Let me give an example of a speaker that would be suited for a low damping factor (high output impedance) amplifier. Suppose you have a very low-Q fullrange single-driver speaker whose frequency response (measured on a high damping factor amplifier) shows a gentle rolloff starting in the upper bass region, with the low bass being pretty weak. This speaker will sound thin and gutless without help in the bass region.
Okay, let's look at what happens when this speaker is driven by a tube amp with a very low damping factor, let's say a damping factor of 1 (output impedance of 8 ohms). This would be like doubling the driver's electrical Q. So in effect we would be getting a "free lunch" - about 3 dB or so of bass boost. This will probably make the speaker's tonal balance acceptable without having to add a subwoofer.
To give a real-world example, I build a speaker that is -3 dB at 35 Hz and -6 dB at 32 Hz with a solid state amp. With a low-damping-factor tube amp, this same speaker is -3 dB at 30 Hz and -6 dB at 24 Hz (this assumes appropriate re-tuning of the port.) As you can see, there is a significant "free lunch" here as well: the -6 dB point (which often predicts the actual in-room bass extension) moves about half an octave lower with the low damping factor amp. And, the response is actually smoother (less ripple) with the low damping factor amp.
I just gave away one of my secrets. Since it's over here under "Amps Preamps" instead of under "Speakers", maybe no one will notice.
Duke
Let me give an example of a speaker that would be suited for a low damping factor (high output impedance) amplifier. Suppose you have a very low-Q fullrange single-driver speaker whose frequency response (measured on a high damping factor amplifier) shows a gentle rolloff starting in the upper bass region, with the low bass being pretty weak. This speaker will sound thin and gutless without help in the bass region.
Okay, let's look at what happens when this speaker is driven by a tube amp with a very low damping factor, let's say a damping factor of 1 (output impedance of 8 ohms). This would be like doubling the driver's electrical Q. So in effect we would be getting a "free lunch" - about 3 dB or so of bass boost. This will probably make the speaker's tonal balance acceptable without having to add a subwoofer.
To give a real-world example, I build a speaker that is -3 dB at 35 Hz and -6 dB at 32 Hz with a solid state amp. With a low-damping-factor tube amp, this same speaker is -3 dB at 30 Hz and -6 dB at 24 Hz (this assumes appropriate re-tuning of the port.) As you can see, there is a significant "free lunch" here as well: the -6 dB point (which often predicts the actual in-room bass extension) moves about half an octave lower with the low damping factor amp. And, the response is actually smoother (less ripple) with the low damping factor amp.
I just gave away one of my secrets. Since it's over here under "Amps Preamps" instead of under "Speakers", maybe no one will notice.
Duke