Shadorne, great links! Thanks for the interesting reading.
One source of confusion is that there's a lot of ambiguity between in the terms "horn" and "waveguide" (add "lens" and it gets worse) - I tend to use them rather imprecisely as well. But to differ with AeroNET article (if I was to attempt to be precise), I think that the difference lies not in the efficiency or the type of driver used, but rather in the theoritical basis for its shape. A "horn" is usually based (at least loosely) on Webster's horn equations, which were derived in the early 1920s mainly to calculate the load the horn presents to the driver, for the purpose of maximizing efficiency -- this is the origin of the classic exponential shapes. However, there's very little theoritical basis here for understanding the horn's directivity characteristics, which is why horns for the first half of the 20th century used other techniques (multi-cellular construction, or a slant-plate lens) to control directivity without a good understanding of how the contour itself affects this.
A "waveguide" on the other hand is designed with mathematics that are derived from other fields, using techniques designed to accurately predict the directivity based on the waveguide's contours. The specifics of these maths are way over my head, but I think it's accurate to say that waveguide theory isn't limited to lower rates of expansion or lower acoustic gains.
The root of my skepticism with the direct-radiator/short-waveguide configuration (for which I've made the Genelec monitors the poster-boy) is that with my (admittedly VERY rudimentary and imprecise) understanding of both waveguide techniques and Webster's equations . . . all of it assumes a specific wave-front propegation for the horn/waveguide to work as intended. So for true constant-directivity performance to be possible, the wave-front propegation has to be constant with frequency . . . and the conventional direct-radiating cones and domes used in such configurations do NOT acheive this. Rather, they exhibit the classic increase in directivity with increase in frequency, just like all domes and cones.
The author of the AEROnet article does make mention of this, but then goes on to say that for wide-angle waveguides with direct-radiating drivers "that most of the mathematical detail can be side-stepped." Huh???? If you side-step the mathematical detail, then what you have is simply a random curvy recessed cabinet-front, and NOT a waveguide. He then goes on to make some measurements of some purely emperically-derived combinations . . . and while the final results look nice and smooth, this seems to be the obvious result of simply changing the way the waveguide is illuminated, thereby effectively altering its curve in a theoritical sense.
The K&H monitor does indeed have very smooth directivity plots, but the directivity still increases quite steadily with frequency . . . as one expects with direct-radiating domes. I would say that the smoothness of these plots (compared to i.e. a Genelec 3-way) is a testament to the excellent performance of the drivers themselves, and well-implemented crossover design . . . and the cabinet contours help out at the extremes. But they're also endorsing my other pet-peeve -- horizontal placement, for which they give no directivity plots. Suffice it to say it will be worse, and its horizontal polar response will then exhibit some of the inconsistencies found in the vertical directivity plots. Maybe they can clean this up a bit in the DSP, by changing some of the crossover slope characteristics . . .