Bifwynne, most tube amps have much lower damping factors than most solid state amps. Some very highly regarded tube amps have damping factors in the vicinity of 2, although most tube designs are somewhat higher than that.
What is important is that damping factor and output impedance (which unless otherwise specified is equal to damping factor divided into 8 ohms) should be chosen to be suitable matches for the particular speaker. Mismatches can occur in two ways:
1)Tonal imbalances may result if the speaker design, particularly its variations of impedance as a function of frequency, reflects the expectation that it will be used with a solid state amp and it is used with a tube amp, or vice versa. See this
Atma-Sphere white paper. What he refers to as a "power paradigm" amplifier would be one with high output impedance, and what he refers to as a "voltage paradigm" amplifier would be one with low output impedance.
2)Speakers rely to varying degrees on the amplifier for damping of "back emf" produced by the woofer. Inadequate damping will result in "loose" bass, because the woofer cone will tend to continue moving after the signal has stopped or changed. However, as indicated earlier in this thread, once a damping factor is provided that is adequate for the particular speaker, which is rarely if ever higher than a two-digit number, further increases in damping factor will not be helpful, and in some cases may be reflective of excessive feedback that would be sonically harmful.
The key thing is the matchup of speaker and amp. Some speakers are good matches for both tube and solid state amps, but some are not. A simple way to help narrow that down is to research what amps others have used successfully with the particular speaker.
Regards,
-- Al